...  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019 
1.  Angelopoulos et al.: The Space Physics Environment Data Analysis System (SPEDAS), Space Sci. Rev., 215, 9, doi:10.1007/s11214-018-0576-4, 2019.
2.  Archer et al.: Direct observations of a surface eigenmode of the dayside magnetopause, Nature, 10, 615, doi:10.1038/s41467-018-08134-5, 2019.
3.  Bader et al.: Proton temperature anisotropies in the plasma environment of Venus, J. Geophys. Res., 124, 3312–3330, doi:10.1029/2019JA026619, 2019.
4.  Barnes et al.: CMEs in the heliosphere: II. A Statistical analysis of the kinematic properties derived from single-spacecraft geometrical modelling techniques applied to CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Phys., 294, 57, doi:10.1007/s11207-019-1444-4, 2019.
5.  Chargeishvili et al.: Variation of coronal holes latitudinal distribution: Correction of limb brightening of EUV coronal images, Adv. Space Res., 64, 491-503, doi:10.1016/j.asr.2019.04.009, 2019.
6.  Chen et al.: Carriers of the field-aligned currents in the plasma sheet boundary layer: An MMS multi-case study, J. Geophys. Res., 124, 2873–2886, doi:10.1029/2018JA026216, 2019.
7.  Cherenkov et al.: The influence of superflares of host stars on the cynamics of the envelopes of hot Jupiters, Astron. Rep., 63, 94-106, doi:10.1134/S1063772919020033, 2019.
8.  Collinson et al.: Spontaneous hot flow anomalies at Mars and Venus, J. Geophys. Res., doi:10.1002/2017JA024196, online, 2019.
9.  Cozzani et al.: In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection, Phys. Rev. E., 99, 043204, doi:10.1103/PhysRevE.99.043204, 2019.
10.  Dididze et al.: Comparative analysis of solar radio bursts before and during CME propagation, Astron. & Astrophys., 625, A63, doi:10.1051/0004-6361/201629489, 2019.
11.  Dumbović et al.: Unusual plasma and particle signatures at Mars and STEREO-A related to CME–CME interaction, Astrophys. J., 880, 18, doi:10.3847/1538-4357/ab27ca, 2019.
12.  Forstner et al.: Tracking and validating ICMEs propagating towards Mars using STEREO heliospheric imagers combined with forbush decreases detected by MSL/RAD, Space Weather, doi:10.1029/2018SW002138, online, 2019.
13.  Gachechiladze et al.: Magneto-Rossby waves in the solar tachocline and the annual variations in solar activity, Astrophys. J., 874, 162, doi:10.3847/1538-4357/ab0955, 2019.
14.  Graham et al.: Enhanced photoelectron escape caused by Langmuir and upper hybrid waves: MMS observations, J. Geophys. Res., doi:10.1029/2018JA025874, online, 2019.
15.  Hasegawa et al.: Reconstruction of the electron diffusion region of magnetotail reconnection seen by the MMS spacecraft on 11 July 2017, J. Geophys. Res., 124, 122-138, doi:10.1029/2018JA026051, 2019.
16.  Hesse et al.: Erratum: “On the role of separatrix instabilities in heating the reconnection outflow region” [Phys. Plasmas 25, 122902 (2018)], Phys. Plasma, 26, 049901, doi:10.1063/1.5094132, 2019.
17.  Hofer, B., Ph.-A. Bourdin: Application of the electromotive force as a shock front indicator in the inner heliosphere, Astrophys. J., 878, 30, doi:10.3847/1538-4357/ab1e48, 2019.
18.  Holmes et al.: Electron phase-space holes in three dimensions: Multi-spacecraft observations by Magnetospheric MultiScale, J. Geophys. Res., doi:10.1029/2018JA025750, online, 2019.
19.  Janvier et al.: Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus and Earth from superposed epoch analyses, J. Geophys. Res., 124, 812-836, doi:10.1029/2018JA025949, 2019.
20.  Kuridze et al.: Mapping the magnetic field of flare coronal loops, Astrophys. J., 874, 126, doi:10.3847/1538-4357/ab08e9, 2019.
21.  Lhotka et al.: Orbital stability of ensembles of particles in regions of magnetic reconnection in Earth’s magneto-tail, Phys. Plasma, 26, 072903, doi:10.1063/1.5093392, 2019.
22.  Masunaga et al.: Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus, ICARUS, 321, 379-387, doi:10.1016/j.icarus.2018.11.017, 2019.
23.  Nakamura et al.: Structure of the current sheet in the 2017/07/11 electron diffusion region event, J. Geophys. Res., 124, 1173-1186, doi:10.1029/2018JA026028, 2019.
24.  Nakamura et al.: Measurement of the magnetic reconnection rate in the Earth’s magnetotail, J. Geophys. Res., doi:10.1029/2018JA025713, online, 2019.
25.  Narita, Y.: A note on Capon’s minimum variance projection for multi-spacecraft data analysis, Front. Phys., 7, 8, doi:10.3389/fphy.2019.00008, 2019.
26.  Panov et al.: Continent-wide R1/R2 current system and ohmic losses by broad dipolarization-injection fronts, J. Geophys. Res., 124, 4064-4082, doi:10.1029/2019JA026521, 2019.
27.  Panov et al.: Ionospheric footprints of detached magnetotail interchange heads, Geophys. Res. Lett., doi:10.1029/2019GL083070, online, 2019.
28.  Pérez-de-Tejada et al.: Measurement of plasma channels in the Venus wake, ICARUS, 321, 1026-1037, doi:10.1016/j.icarus.2018.09.039, 2019.
29.  Persson et al.: Heavy ion flows in the upper ionosphere of the Venusian north pole, J. Geophys. Res., 124, 4597-4607, doi:10.1029/ 2018JA026271, 2019.
30.  Plaschke et al.: Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling, Geosci. Instrum. Method. Data Syst., 8, 63-76, doi:10.5194/gi-8-63-2019, 2019.
31.  Schmid et al.: A statistical study on the properties of dips ahead of dipolarization fronts observed by MMS, J. Geophys. Res., 124, 139-150, doi:10.1029/2018JA026062, 2019.
32.  Sergeev et al.: Substorm‐related near‐Earth reconnection surge: Combining telescopic and microscopic views, Geophys. Res. Lett., 46, 6239–6247, doi:10.1029/ 2019GL083057, 2019.
33.  Shi et al.: South-north hemisperic asymmetry of the FAE dristibution around the cusp region: Cluster observation, J. Geophys. Res., doi:10.1029/2019JA026582, online, 2019.
34.  Sitnov et al.: Explosive magnetotail activity, Space Sci. Rev., 215, 31, doi:10.1007/s11214-019-0599-5, 2019.
35.  Sorriso-Valvo et al.: Turbulence-driven ion beams in the magnetospheric Kelvin-Helmholtz instability, Phys. Rev. Lett., 122, 035102, doi:10.1103/PhysRevLett.122.035102, 2019.
36.  Spiegeleer et al.: Oscillatory flows in the magnetotail plasma sheet: Cluster observations of the distribution function, J. Geophys. Res., 124, 2736–2754, doi:10.1029/2018JA026116, 2019.
37.  Sun et al.: MMS study of the structure of ion-scale flux ropes in the Earth’s cross-tail current sheet, Geophys. Res. Lett., 46, 6168-6177, doi:10.1029/2019GL083301, 2019.
38.  Torkar et al.: Improved determination of plasma density based on spacecraft potential of the magnetospheric MultiScale Mission under active potential control, Trans. Plasma Sci., doi:10.1109/TPS.2019.2911425, online, 2019.
39.  Treumann, R.A., W. Baumjohann: A note on the entropy force in kinetic theory and black holes, Entropy, 21, 716, doi:10.3390/e21070716, 2019.
40.  Treumann, R.A., W. Baumjohann: Possible increased critical temperature Tc in anisotropic bosonic gases, Sci. Report, 9, 10399, doi:10.1038/s41598-019-46806-4, 2019.
41.  Treumann et al.: On the ion-inertial-range density-power spectra in solar wind turbulence, Ann. Geophys., 37, 183-199, doi:10.5194/angeo-37-183-2019, 2019.
42.  Treumann et al.: On the applicability of Taylor’s hypothesis in streaming magnetohydrodynamic turbulence, Earth, Planets and Space, 71, 41, doi:10.1186/s40623-019-1021-y, 2019.
43.  Vashalomidze et al.: Measuremt of the polytropic index during solar coronal rain using a digram of the electron density distribution as a function of electron temperature, Astrophysics, 62, 69-78, doi:10.1007/s10511-019-09565-8, 2019.
44.  Vršnak et al.: Heliospheric evolution of magnetic clouds, Astrophys. J., 877, 77, doi:10.3847/1538-4357/ab190a, 2019.
45.  Vuorinen et al.: Jets in the magnetosheath: IMF control of where they occur, Ann. Geophys., 37, 689-697, doi:10.5194/angeo-37-689-2019, 2019.
46.  Wang et al.: Solar wind directional change triggering flapping motions of the current sheet: MMS observations, Geophys. Res. Lett., 46, 64-70, doi:10.1029/2018GL080023, 2019.
47.  Wedlund et al.: Solar wind charge exchange in cometary atmospheres III. Results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko, Astronomy & Astrophys., doi:10.1051/0004-6361/201834881, online, 2019.
48.  Xu et al.: Observations of the Venus dramatic response to an extremely strong interplanetary coronal mass ejection, Astrophys. J., 876, 84, doi:10.3847/1538-4357/ab14e1, 2019.
 ...  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019