...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020 
1.  Angelopoulos et al.: The Space Physics Environment Data Analysis System (SPEDAS), Space Sci. Rev., 215, 9, doi:10.1007/s11214-018-0576-4, 2019.
2.  Archer et al.: Direct observations of a surface eigenmode of the dayside magnetopause, Nature, 10, 615, doi:10.1038/s41467-018-08134-5, 2019.
3.  Bader et al.: Proton temperature anisotropies in the plasma environment of Venus, J. Geophys. Res., 124, 3312–3330, doi:10.1029/2019JA026619, 2019.
4.  Barnes et al.: CMEs in the heliosphere: II. A Statistical analysis of the kinematic properties derived from single-spacecraft geometrical modelling techniques applied to CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Phys., 294, 57, doi:10.1007/s11207-019-1444-4, 2019.
5.  Barrie et al.: Characterizing spacecraft potential effects on measured particle trajectories, Phys. Plasmas, 26, 103504, doi:10.1063/1.5119344, 2019.
6.  Breuillard et al.: Properties of the singing comet waves in the 67P/Churyumov-Gerasimenko plasma environment as observed by the Rosetta mission, Astronom. & Astrophys., 630, A39, doi:10.1051/0004-6361/201834876, 2019.
7.  Chang et al.: Multiple-point modeling the Parker spiral configuration of the solar wind magnetic field at the solar maximum of Solar Cycle 24, Astrophys. J., 884, 102, doi:10.3847/1538-4357/ab412a, 2019.
8.  Chargeishvili et al.: Variation of coronal holes latitudinal distribution: Correction of limb brightening of EUV coronal images, Adv. Space Res., 64, 491-503, doi:10.1016/j.asr.2019.04.009, 2019.
9.  Chen et al.: Carriers of the field-aligned currents in the plasma sheet boundary layer: An MMS multi-case study, J. Geophys. Res., 124, 2873–2886, doi:10.1029/2018JA026216, 2019.
10.  Chen et al.: Small spatial scale field-aligned currents in the plasma sheet boundary layer surveyed by magnetosphere multiscale spacecraft, J. Geophys. Res., 124, 9976-9985, doi:10.1029/2019JA027027, 2019.
11.  Cherenkov et al.: The influence of superflares of host stars on the cynamics of the envelopes of hot Jupiters, Astron. Rep., 63, 94-106, doi:10.1134/S1063772919020033, 2019.
12.  Comisel et al.: Multi-channel coupling of decay instability in three-dimensional low-beta plasma, Ann. Geophys., 37, 835–842, doi:10.5194/angeo-37-835-2019, 2019.
13.  Cozzani et al.: In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection, Phys. Rev. E., 99, 043204, doi:10.1103/PhysRevE.99.043204, 2019.
14.  Dididze et al.: Comparative analysis of solar radio bursts before and during CME propagation, Astron. & Astrophys., 625, A63, doi:10.1051/0004-6361/201629489, 2019.
15.  Divin et al.: Inner and outer electron diffusion region of antiparallel collisionless reconnection: Density dependence, Phys. Plasmas, 26, 102305, doi:10.1063/1.5109368, 2019.
16.  Dumbović et al.: Unusual plasma and particle signatures at Mars and STEREO-A related to CME–CME interaction, Astrophys. J., 880, 18, doi:10.3847/1538-4357/ab27ca, 2019.
17.  Echim et al.: A method to estimate the physical properties of magnetospheric generators from observations of quiet discrete auroral arcs, J. Geophys. Res, 124, 10283-10293, doi:10.1029/2019JA026969, 2019.
18.  Ergun et al.: Magnetic reconnection in three dimensions: Observations of electromagnetic drift waves in the adjacent current sheet, J. Geophys. Res., 124, 10104-10118, doi:10.1029/ 2019JA027228, 2019.
19.  Ergun et al.: Magnetic reconnection in three dimensions: Modeling and analysis of electromagnetic drift waves in the adjacent current sheet, J. Geophys. Res, 124, 10085-10103, doi:10.1029/ 2019JA027275, 2019.
20.  Fadanelli et al.: Four-spacecraft measurements of the shape and dimensionality of magnetic structures in the near-Earth plasma environment, J. Geophys. Res., 124, 6850–6868, doi:10.1029/2019JA026747, 2019.
21.  Forstner et al.: Tracking and validating ICMEs propagating towards Mars using STEREO heliospheric imagers combined with forbush decreases detected by MSL/RAD, Space Weather, 17, 586–598, doi:10.1029/2018SW002138, 2019.
22.  Gachechiladze et al.: Magneto-Rossby waves in the solar tachocline and the annual variations in solar activity, Astrophys. J., 874, 162, doi:10.3847/1538-4357/ab0955, 2019.
23.  Goetz et al.: Unusually high magnetic fields in the coma of 67P/Churyumov-Gerasimenko during its high-activity phase, Astronomy & Astrophys., 630, A38, doi:10.1051/0004-6361/201833544, 2019.
24.  Good et al.: Self‐similarity of ICME flux ropes: Observations by radially aligned spacecraft in the inner heliosphere, J. Geophys. Res., 124, 4960–4982, doi:10.1029/ 2019JA026475, 2019.
25.  Goodrich et al.: Impulsively reflected ions: A plausible mechanism for ion acoustic wave growth in collisionless shocks, J. Geophys. Res., 124, 1855–1865, doi:10.1029/2018JA026436, 2019.
26.  Hasegawa et al.: Reconstruction of the electron diffusion region of magnetotail reconnection seen by the MMS spacecraft on 11 July 2017, J. Geophys. Res., 124, 122-138, doi:10.1029/2018JA026051, 2019.
27.  Hesse et al.: Erratum: “On the role of separatrix instabilities in heating the reconnection outflow region” [Phys. Plasmas 25, 122902 (2018)], Phys. Plasma, 26, 049901, doi:10.1063/1.5094132, 2019.
28.  Hofer, B., Ph.-A. Bourdin: Application of the electromotive force as a shock front indicator in the inner heliosphere, Astrophys. J., 878, 30, doi:10.3847/1538-4357/ab1e48, 2019.
29.  Holmes et al.: Structure of electron scale plasma mixing along the dayside reconnection separatrix, J. Geophys. Res., 124, 8788-8803, doi:10.1029/2019JA026974, 2019.
30.  Hu et al.: A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft, Science China, doi:10.1007/s11431-018-9288-8, 2019.
31.  Janvier et al.: Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus and Earth from superposed epoch analyses, J. Geophys. Res., 124, 812-836, doi:10.1029/2018JA025949, 2019.
32.  Kuridze et al.: Mapping the magnetic field of flare coronal loops, Astrophys. J., 874, 126, doi:10.3847/1538-4357/ab08e9, 2019.
33.  Lhotka, Ch., C. Gales: Charged dust close to outer mean-motion resonances in the heliosphere, Celest. Mech. Dyn. Astron., 131, 49, doi:10.1007/s10569-019-9928-y, 2019.
34.  Lhotka et al.: Orbital stability of ensembles of particles in regions of magnetic reconnection in Earth’s magneto-tail, Phys. Plasma, 26, 072903, doi:10.1063/1.5093392, 2019.
35.  Masunaga et al.: Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus, ICARUS, 321, 379-387, doi:10.1016/j.icarus.2018.11.017, 2019.
36.  Merkin et al.: Contribution of bursty bulk flows to the global dipolarization of the magnetotail during an isolated substorm, J. Geophys. Res., 124, 8647–8668, doi:10.1029/2019JA026872, 2019.
37.  Nakamura et al.: Structure of the current sheet in the 2017/07/11 electron diffusion region event, J. Geophys. Res., 124, 1173-1186, doi:10.1029/2018JA026028, 2019.
38.  Nakamura et al.: Disturbance of the front region of magnetic reconnection outflow jets due to the lower-hybrid drift instability, Phys. Rev. Lett., 123, 235101, doi:10.1103/PhysRevLett.123.235101, 2019.
39.  Narita, Y.: A note on Capon’s minimum variance projection for multi-spacecraft data analysis, Front. Phys., 7, 8, doi:10.3389/fphy.2019.00008, 2019.
40.  Panov et al.: Continent-wide R1/R2 current system and ohmic losses by broad dipolarization-injection fronts, J. Geophys. Res., 124, 4064-4082, doi:10.1029/2019JA026521, 2019.
41.  Panov et al.: Ionospheric footprints of detached magnetotail interchange heads, Geophys. Res. Lett., 46, 7237–7247, doi:10.1029/2019GL083070, 2019.
42.  Pérez-de-Tejada et al.: Measurement of plasma channels in the Venus wake, ICARUS, 321, 1026-1037, doi:10.1016/j.icarus.2018.09.039, 2019.
43.  Persson et al.: Heavy ion flows in the upper ionosphere of the Venusian north pole, J. Geophys. Res., 124, 4597-4607, doi:10.1029/ 2018JA026271, 2019.
44.  Plaschke, F.: How many solar wind data are sufficient for accurate fluxgate magnetometer offset determinations?, Geosci. Instrum. Method. Data Syst., 8, 285-291, doi:10.5194/gi-8-285-2019, 2019.
45.  Plaschke et al.: Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling, Geosci. Instrum. Method. Data Syst., 8, 63-76, doi:10.5194/gi-8-63-2019, 2019.
46.  Poh et al.: Dissipation of earthward propagating flux rope through re-reconnection with geomagnetic field: An MMS case study, J. Geophys. Res., 124, 7477-7493, doi:10.1029/2018JA026451, 2019.
47.  Roberts et al.: Anisotropy of the spectral index in ion scale compressible turbulence: MMS observations in the magnetosheath, F. Phys., 7, 184, doi:10.3389/fphy.2019.00184, 2019.
48.  Rozhnoi et al.: Strong influence of solar X-ray flares on low-frequency electromagnetic signals in middle latitudes, Ann. Geophys., 37, 843–850, doi:10.5194/angeo-37-843-2019, 2019.
49.  Schmid et al.: A statistical study on the properties of dips ahead of dipolarization fronts observed by MMS, J. Geophys. Res., 124, 139-150, doi:10.1029/2018JA026062, 2019.
50.  Schmid et al.: Dipolarization fronts: Tangential discontinuities? On the spatial range of validity of the MHD jump conditions, J. Geophys. Res., 124, 9963-9975, doi:10.1029/2019JA027189, 2019.
51.  Sergeev et al.: Substorm‐related near‐Earth reconnection surge: Combining telescopic and microscopic views, Geophys. Res. Lett., 46, 6239–6247, doi:10.1029/ 2019GL083057, 2019.
52.  Shi et al.: South-north hemisperic asymmetry of the FAE dristibution around the cusp region: Cluster observation, J. Geophys. Res., 124, 5342–5352., doi:10.1029/2019JA026582, 2019.
53.  Sitnov et al.: Explosive magnetotail activity, Space Sci. Rev., 215, 31, doi:10.1007/s11214-019-0599-5, 2019.
54.  Sorriso-Valvo et al.: Turbulence-driven ion beams in the magnetospheric Kelvin-Helmholtz instability, Phys. Rev. Lett., 122, 035102, doi:10.1103/PhysRevLett.122.035102, 2019.
55.  Spiegeleer et al.: Oscillatory flows in the magnetotail plasma sheet: Cluster observations of the distribution function, J. Geophys. Res., 124, 2736–2754, doi:10.1029/2018JA026116, 2019.
56.  Spiegeleer et al.: Oxygen ion flow reversals in Earth's magnetotail: A Cluster statistical study, J. Geophys. Res., 124, 8928–8942, doi:10.1029/2019JA027054, 2019.
57.  Sun et al.: MMS study of the structure of ion-scale flux ropes in the Earth’s cross-tail current sheet, Geophys. Res. Lett., 46, 6168-6177, doi:10.1029/2019GL083301, 2019.
58.  Toledo-Redondo et al.: Electrostatic spacecraft potential structure and wake formation effects for characterization of cold ion beams in the Earth’s magnetosphere, J. Geophys. Res., 124, 10048-10062, doi:10.1029/2019JA027145, 2019.
59.  Torkar et al.: Improved determination of plasma density based on spacecraft potential of the magnetospheric MultiScale Mission under active potential control, Trans. Plasma Sci., 47, 3636-3647, doi:10.1109/TPS.2019.2911425, 2019.
60.  Treumann, R.A. W. Baumjohann: Electron pairing in mirror modes: surpassing the quasi-linear limit, Ann. Geophys., 37, 971-988, doi:10.5194/angeo-37-971-2019, 2019.
61.  Treumann, R.A., W. Baumjohann: A note on the entropy force in kinetic theory and black holes, Entropy, 21, 716, doi:10.3390/e21070716, 2019.
62.  Treumann, R.A., W. Baumjohann: Possible increased critical temperature Tc in anisotropic bosonic gases, Sci. Report, 9, 10399, doi:10.1038/s41598-019-46806-4, 2019.
63.  Treumann et al.: On the ion-inertial-range density-power spectra in solar wind turbulence, Ann. Geophys., 37, 183-199, doi:10.5194/angeo-37-183-2019, 2019.
64.  Treumann et al.: On the applicability of Taylor’s hypothesis in streaming magnetohydrodynamic turbulence, Earth, Planets and Space, 71, 41, doi:10.1186/s40623-019-1021-y, 2019.
65.  Turc et al.: First observations of the disruption of the Earth's foreshock wave field during magnetic clouds, Geophys. Res. Lett., 46, 12.644–12.653, doi:10.1029/ 2019GL084437, 2019.
66.  Vashalomidze et al.: Measuremt of the polytropic index during solar coronal rain using a digram of the electron density distribution as a function of electron temperature, Astrophysics, 62, 69-78, doi:10.1007/s10511-019-09565-8, 2019.
67.  Vashalomidze et al.: Eruption of prominences triggered by coronal rain in the solar atmosphere observed by SDO/AIA and Stereo/EUVI, Astrophysics, 62, 591-603, doi:/10.1007/s10511-019-09602-6, 2019.
68.  Volwerk et al.: Dynamic field line draping at comet 67P/Churyumov-Gerasimenko during the Rosetta dayside excursion, Astronomy & Astrophys., 630, A44, doi:10.1051/0004-6361/201935517, 2019.
69.  Vörös et al.: Energy conversion at kinetic scales in the turbulent magnetosheath, Front. Astron. Space Sci., 6, 60, doi:10.3389/fspas.2019.00060, 2019.
70.  Vörös et al.: MMS observations of whistler and lower hybrid drift waves associated with magnetic reconnection in the turbulent magnetosheath, J. Geophys. Res., 124, 8551–8563, doi:10.1029/2019JA027028, 2019.
71.  Vršnak et al.: Heliospheric evolution of magnetic clouds, Astrophys. J., 877, 77, doi:10.3847/1538-4357/ab190a, 2019.
72.  Vuorinen et al.: Jets in the magnetosheath: IMF control of where they occur, Ann. Geophys., 37, 689-697, doi:10.5194/angeo-37-689-2019, 2019.
73.  Wang et al.: Propagation of EMIC waves inside the plasmasphere: a two-event study, J. Geophys. Res., 124, 8396–8415, doi:10.1029/2019JA027055, 2019.
74.  Wang et al.: Solar wind directional change triggering flapping motions of the current sheet: MMS observations, Geophys. Res. Lett., 46, 64-70, doi:10.1029/2018GL080023, 2019.
75.  Wedlund et al.: Solar wind charge exchange in cometary atmospheres III. Results from the Rosetta mission to comet 67P/Churyumov-Gerasimenko, Astronomy & Astrophys., 630, A37, doi:10.1051/0004-6361/201834881, 2019.
76.  Xu et al.: Observations of the Venus dramatic response to an extremely strong interplanetary coronal mass ejection, Astrophys. J., 876, 84, doi:10.3847/1538-4357/ab14e1, 2019.
77.  Zhang, L.Q. et al.: Measurements of the vorticity in the bursty bulk flows, Geophys. Res. Lett., 46, 10322-10329, doi:10.1029/2019GL084597, 2019.
 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020