Publikationen

 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020 
1.  Bailey et al.: Prediction of Dst during solar minimum using in situ measurements at L5, Space Weather, 18, e2019SW002424, doi:10.1029/2019SW002424, 2020.
2.  Birn et al.: Ion beams in the plasma sheet boundary layer: MMS observations and test particle simulations, J. Geophys. Res., 125, e2019JA027113, doi:10.1029/2019JA027113, 2020.
3.  Blanc et al.: Joint Europa Mission (JEM): a multi-scale study of Europa to characterize its habitability and search for extant life, Planet. Space Sci., 193, 104960, doi:10.1016/j.pss.2020.104960, 2020.
4.  Blanco-Cano et al.: Magnetosheath microstructure: Mirror mode waves and jets during southward IP magnetic field, J. Geophys. Res., 125, e2020JA027940, doi:10.1029/2020JA027940, 2020.
5.  Boudjada et al.: Low-altitude frequency-banded equatorial emissions observed below the electron cyclotron frequency, Ann. Geophys., 38, 765-774, doi:10.5194/angeo-38-765-2020, 2020.
6.  Bourdin, Ph.A.: Driving solar coronal MHD simulations on highperformance computers, Geophys. Astrophys. Fluid Dyn., 114, NOS.1-2, 235-260, doi:10.1080/03091929.2019.1643849, 2020.
7.  Chang et al.: The demagnetization of the Venusian ionosphere under nearly flow-aligned interplanetary magnetic fields, Astrophys. J., 900, 63, doi:10.3847/1538-4357/aba62a, 2020.
8.  Chen et al.: Lower-hybrid drift waves driving electron nongyrotropic heating and vortical flows in a magnetic reconnection layer, Phys. Rev. Lett., 125, 025103, doi:10.1103/PhysRevLett.125.025103, 2020.
9.  Collinson et al.: Foreshock cavities at Venus and Mars, J. Geophys. Res., 125, e2020JA028023, doi:10.1029/2020JA028023, 2020.
10.  Comişel et al.: Alfvén wave evolution into magnetic filaments in 3‑D space plasma, Earth, Planets Space, 72, 32, doi:10.1186/s40623-020-01156-8, 2020.
11.  Dai et al.: AME: A cross-scale constellation of CubeSats to explore magnetic reconnection in the solar–terrestrial relation, Front. Phys., 8, 89, doi:10.3389/fphy.2020.00089, 2020.
12.  Denton et al.: Polynomial reconstruction of the reconnection magnetic field observed by multiple spacecraft, J. Geophys. Res., doi:10.1029/2019JA027481, online, 2020.
13.  Dikpati et al.: Physics of magnetohydrodynamic Rossby waves in the Sun, Astrophys. J., 896, 141, doi:10.3847/1538-4357/ab8b63, 2020.
14.  Dumbovic et al.: Evolution of coronal mass ejections and the corresponding forbush decreases: Modeling vs. multi-spacecraft Observations, Solar Phys., 295, 104, doi:10.1007/s11207-020-01671-7, 2020.
15.  Ergun et al.: Observations of particle acceleration in magnetic reconnection–driven turbulence, Astrophys. J., 898, 154, doi:10.3847/1538-4357/ab9ab6, 2020.
16.  Escoubet et al.: Cluster and MMS simultaneous observations of magnetosheath high speed jets and their impact on the magnetopause, Front. Astron. Space Sci., 6, 78, doi:10.3389/fspas.2019.00078, 2020.
17.  Franci et al.: Modeling MMS observations at the Earth’s magnetopause with hybrid simulations of Alfvénic rurbulence, Astrophys. J., 898, 175, doi:10.3847/1538-4357/ab9a47, 2020.
18.  Franco et al.: The correlation length of ULF waves around Venus: VEX observations, Planetary Space Sci., doi:10.1016/j.pss.2019.104761, online, 2020.
19.  Goetz et al.: Singing comet waves in a solar wind convective electric field frame, Geophys. Res. Lett., 47, e2020GL087418, doi:10. 1029/2020GL087418, 2020.
20.  Goldstein et al.: Global ENA imaging and in situ observations of substorm dipolarization on 10 August 2016, J. Geophys. Res., 125, e2019JA027733, doi:1029/2019JA027733, 2020.
21.  Grigorenko et al.: Investigation of electron distribution functions associated with whistler waves at dipolarization fronts in the Earth's magnetotail: MMS observations, J. Geophys. Res., 125, e2020JA028268, doi:10.1029/2020JA028268, 2020.
22.  Gronov et al.: Atmospheric escape processes and planetary atmospheric evolution, J. Geophys. Res., 125, e2019JA027639, doi:10.1029/2019JA027639, 2020.
23.  Hasegawa et al.: Generation of turbulence in Kelvin-Helmholtz vortices at the Earth’s magnetopause: Magnetospheric multiscale observations, J. Geophys. Res., 125, e2019JA027595, doi:10.1029/2019JA027595, 2020.
24.  Hayakawa et al.: Thaddäus Derfflinger’s sunspot observations during 1802–1824: A primary reference to understand the Dalton minimum, Astrophys. J., 890, 98, doi:10.3847/1538-4357/ab65c9, 2020.
25.  Horbury et al.: The Solar Orbiter magnetometer, Astronom. & Astrophys., 642, A9, doi:10.1051/0004-6361/201937257, 2020.
26.  Hwang et al.: Magnetic reconnection inside a flux rope induced by Kelvin-Helmholtz vortices, J. Geophys. Res, 125, e2019JA027665, doi:10.1029/2019JA027665, 2020.
27.  Kasaba et al.: Mission data processor aboard the BepiColombo Mio spacecraft: Design and scientific operation concept, Space Sci. Rev., 216, 34, doi:10.1007/s11214-020-00658-x, 2020.
28.  Korovinskiy et al.: Grad–Shafranov reconstruction of the magnetic configuration in the reconnection X-point vicinity in compressible plasma, Phys. Plasma, 27, 082905, doi:10.1063/5.0015240, 2020.
29.  Krauss et al.: Exploring thermospheric variations triggered by severe geomagnetic storm on 26 August 2018 using GRACE follow-on data, J. Geophys. Res., 125, e2019JA027731, doi:10.1029/2019JA027731, 2020.
30.  Lhotka et al.: Charging time scales and magnitudes of dust and spacecraft potentials in space plasma scenarios, Phys. Plasmas, doi:10.1063/5.0018170, 2020.
31.  Li et al.: Electron Bernstein waves driven by electron crescents near the electron diffusion region, Nature, 11, 141, doi:10.1038/s41467-019-13920-w, 2020.
32.  Liu et al.: Mars orbiter magnetometer of China's first Mars mission Tianwen-1, Earth Planet. Phys., 4, 384-389, doi:10.26464/epp2020058, 2020.
33.  Liu et al.: Statistical study of magnetosheath jet-driven bow waves, J. Geophys. Res., 125, e2019JA027710, doi:10.1029/2019JA027710, 2020.
34.  Lu et al.: Magnetotail reconnection onset caused by electron kinetics with a strong external driver, Nature, 11, 5049, doi:10.1038/s41467-020-18787-w, 2020.
35.  Lukin et al.: Comparison of the flank magnetopause at near-Earth and lunar distances: MMS and ARTEMIS observations, J. Geophys. Res., doi:10.1029/2020JA028406, online, 2020.
36.  Magnesm et al.: Space weather magnetometer aboard GEO-KOMPSAT-2A, Space Sci. Rev., 216, 119, doi:10.1007/s11214-020-00742-2, 2020.
37.  Marshall et al.: Asymmetric reconnection within a flux rope-type dipolarization front, J. Geophys. Res., 125, e2019JA027296, doi:10.1029/2019JA027296, 2020.
38.  Mdzinarishvili et al.: Determination of the solar rotation parameters via orthogonal polynomials, Adv. Space Res., 65, 1843-1851, doi:10.1016/j.asr.2020.01.015, 2020.
39.  Milillo et al.: Investigating Mercury’s environment with the two-spacecraft BepiColombo mission, Space Sci. Rev., 216, 93, doi:10.1007/s11214-020-00712-8, 2020.
40.  Murakami et al.: Mio—First comprehensive exploration of Mercury’s space environment: Mission overview, Space Sci. Rev., 216, 213, doi:10.1007/s11214-020-00733-3, 2020.
41.  Nakamura et al.: Decay of Kelvin-Helmholtz vortices at the Earth’s magnetopause under pure southward IMF conditions, Geophys. Res. Lett., 47, e2020GL087574, doi:10.1029/2020GL087574, 2020.
42.  Nakamura et al.: Effects of fluctuating magnetic field on the growth of the Kelvin-Helmholtz instability at the Earth’s magnetopause, Earth Space Sci. O. Arch., doi:10.1002/essoar.10501061.1, online, 2020.
43.  Narita et al.: Transport ratios of the kinetic Alfvén mode in space plasmas, Front. Phys., 8, 166, doi:10.3389/fphy.2020.00166, 2020.
44.  Norgren et al.: Electron acceleration and thermalization at magnetotail separatrices, J. Geophys. Res., 125, e2019JA027440; doi:10.1029/2019JA027440, 2020.
45.  Panov et al.: Understanding spacecraft trajectories through detached magnetotail interchange heads , J. Geophys. Res., 125, e2020JA027930, doi:10.1029/2020JA027930, 2020.
46.  Perri et al.: On the deviation from Maxwellian of the ion velocity distribution functions in the turbulent magnetosheath, J. Plasma Phys., 86, 905860108, doi:10.1017/S0022377820000021, 2020.
47.  Plaschke et al.: Scale sizes of magnetosheath jets, J. Geophys. Res., 125, e2020JA027962, doi:10.1029/2020JA027962, 2020.
48.  Plaschke et al.: On the alignment of velocity and magnetic fields within magnetosheath jets, Ann. Geophys., 38, 287–296, doi:10.5194/angeo-38-287-2020, 2020.
49.  Qin et al.: Coupling between the magnetospheric dipolarization front and the Earth’s ionosphere by ultralow-frequency waves, Astrophys. J. Lett., 895, L13, doi:10.3847/2041-8213/ab8e48, 2020.
50.  Raptis et al.: Classifying magnetosheath jets using MMS - statistical properties, J. Geophys. Res., doi:10.1029/2019JA027754, online, 2020.
51.  Reiss et al.: Forecasting the ambient solar wind with numerical models. II. An adaptive prediction system for specifying solar wind speed near the Sun, Astrophys. J., 891, 165, doi:10.3847/1538-4357/ab78a0, 2020.
52.  Roberts et al.: Estimation of the electron density from spacecraft potential during high frequency electric field fluctuations, J. Geophys. Res., 125, e2020JA027854, doi:10.1029/2020JA027854, 2020.
53.  Roberts et al.: Sub-ion scale compressive turbulence in the solar wind: MMS spacecraft potential observations, Astrophys. J. Supp., 250, 35, doi:10.3847/1538-4365/abb45d, 2020.
54.  Schmid et al.: Magnetometer in-flight offset accuracy for the BepiColombo spacecraft, Ann. Geophys., 38, 823-832, doi:10.5194/angeo-38-823-2020, 2020.
55.  Sorathia et al.: Ballooning-interchange instability in the near-Earth plasma sheet and auroral beads: Global magnetospheric modeling at the limit of the MHD approximation, Geophys. Res. Lett, 47, e2020GL088227, doi:10.1029/2020GL088227, 2020.
56.  Staples et al.: Do statistical models capture the dynamics of the magnetopause during sudden magnetospheric compressions?, J. Geophys. Res., 125, e2019JA027289, doi:10.1029/2019JA027289, 2020.
57.  Toepfer et al.: The capon method for Mercury’s magnetic field analysis, Front. Phys., 8, 249, doi:10.3389/fphy.2020.00249, 2020.
58.  Treumann, R.A., W. Baumjohann: Lorentzian entropies and Olbert's κ - distribution, Front. Phys., 8, 221, doi:10.3389/fphy.2020.00221, 2020.
59.  Treumann, R.A., W. Baumjohann: Auroral kilometric radiation and electron pairing, Front. Phys., 8, 386, doi:10.3389/fphy.2020.00386, 2020.
60.  Treumann, R.A., W. Baumjohann: Topside reconnection, Front. Phys., 8, 586082, doi:10.3389/fphy.2020.586082, 2020.
61.  Vernisse et al.: Latitudinal dependence of the Kelvin-Helmholtz instability and beta dependence of vortex-induced high-guide field magnetic reconnection, J. Geophys. Res, 125, e2019JA027333, doi:10.1029/2019JA027333, 2020.
62.  Volwerk et al.: On the magnetic characteristics of magnetic holes in the solar wind between Mercury and Venus, Ann. Geophys., 38, 58-60, doi:10.5194/angeo-38-51-2020, 2020.
63.  Wang et al.: Roles of electrons and ions in formation of the current in mirror-mode structures in the terrestrial plasma sheet: Magnetospheric multiscale observations, Ann Geophys., 38, 309-319, doi:10.5194/angeo-38-309-2020, 2020.
64.  Wang et al.: Study of the electron velocity inside sub-ion scale magnetic holes in the solar wind by MMS observations, J. Geophys. Res., 125, e2020JA028386, doi:10.1029/2020JA028386, 2020.
65.  Wang et al.: Statistical properties of sub-ion magnetic holes in the solar wind at 1 AU, J. Geophys. Res., 125, e2020JA028320, doi:10.1029/2020JA028320, 2020.
66.  Xiao et al.: Turbulence near the Venusian bow shock: Venus Express observations, J. Geophys. Res., 125, e2019JA027190, doi:10.1029/2019JA027190, 2020.
67.  Xiao et al.: Turbulence in the near-Venusian space: Venus Express observations, Earth Planet. Phys., 4, 82-87, doi:10.26464/epp2020012, 2020.
68.  Xiao et al.: Survey of 1-Hz waves in the near-Venusian space: Venus Express observations, Planet. Space Sci., 187, 104933, doi:10.1016/j.pss.2020.104933, 2020.
69.  Xu et al.: Asteroid migration due to the Yarkovsky effect and the distribution of the Eos family, R. Astro. Soc., 493, 1447-1460, doi:10.1093/mnras/staa352, 2020.
70.  Yang et al.: MMS direct observations of kinetic-scale shock self-reformation, Astrophys. J. Lett., 90, L6, doi:10.3847/2041-8213/abb3ff, 2020.
71.  Yordanova et al.: Current sheet statistics in the magnetosheath, Front. Astron. Space Sci., 7, 2, doi:10.3389/fspas.2020.00002, 2020.
72.  Zhang, L.Q. et al.: Anisotropic vorticity within bursty bulk flow turbulence, J. Geophys. Res., 125, e2020JA028255, doi:10.1029/2020JA028255, 2020.
73.  Zhang, L.Q. et al.: BBF deceleration down-tail of X < -15 RE from MMS observation, J. Geophys. Res., 125, e2019JA026837, doi:10.1029/2019JA026837, 2020.
 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020