Publikationen

 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020 
1.  Bourdin, P.A.: Catalog of fine-structured electron velocity distribution functions – Part 1: Antiparallel magnetic-field reconnection (Geospace environmental modeling case), Ann. Geophys., 35, 1051-1067, doi:10.5194/angeo-35-1051-2017, 2017.
2.  Cassak et al.: The effect of a guide field on local energy conversion during asymmetric magnetic reconnection: Particle-in-cell simulations, J. Geophys. Res., 122, 11.523–11.542, doi:10.1002/2017JA024555, 2017.
3.  Chasapis et al.: Electron heating at kinetic scales in magnetosheath turbulence, Astrophys. J., 836, 247, doi:10.3847/1538-4357/836/2/247, 2017.
4.  Chen et al.: Characteristics of ionospheric flux rope at the terminator observed by Venus Express, J. Geophys. Res., 122, 8858-8867, doi:10.1002/2017JA023999, 2017.
5.  Cherenkov et al.: The influence of coronal mass ejections on the mass-loss rates of hot-Jupiters, Astrophys. J., 846, 31, doi:10.3847/1538-4357/aa82b2, 2017.
6.  Chong et al.: A study of ionopause perturbation and associated boundary wave formation at Venus, J. Geophys. Res., 122, 4284–4298, doi:10.1002/2016JA023769, 2017.
7.  De Spiegeleer et al.: Low frequency oscillatory flow signatures and high-speed flows in the Earth's magnetotail, J. Geophys. Res., 122, 7042-7056, doi:10.1002/2017JA024076, 2017.
8.  Delva et al.: Asymmetries in the magnetosheath field draping on Venus' night side, J. Geophys. Res., 122, 10396-10407, doi:10.1002/2017JA024604, 2017.
9.  Desai et al.: Hybrid simulations of positively and negatively charged pickup ions and cyclotron wave generation at Europa, J. Geophys. Res., 122, 10408-10420, doi:10.1002/2017JA024479, 2017.
10.  Dwivedi, N.K., S. Singh: Nonlinear whistler wave model for lion roars in the Earth’s magnetosheath, Astrophys. Space Sci., 362, 172, doi:10.1007/s10509-017-3156-2, 2017.
11.  Eastwood et al.: The scientific foundations of forecasting magnetospheric space weather, Space Sci. Rev., 212, 1221–1252, doi:10.1007/s11214-017-0399-8, 2017.
12.  Ergun et al.: Drift waves, intense parallel electric fields, and turbulence associated with asymmetric magnetic reconnection at the magnetopause, Geophys. Res. Lett., 44, 2978–2986, doi:10.1002/2016GL072493, 2017.
13.  Fränz et al.: Ultra low frequency waves at Venus: Observations by the Venus Express spacecraft, Planetary Space Sci., 146, 55-65, doi:10.1016/j.pss.2017.08.011, 2017.
14.  Friedrich et al.: Long-term trends in the D- and E-region based on rocket-borne measurements, JASTP, 163, 78-84, doi:10.1016/j.jastp.2017.04.009, 2017.
15.  Frühauff et al.: Spin axis offset calibration on THEMIS using mirror modes, Ann. Geophys., 35, 117-121, doi:10.5194/angeo-35-117-2017, 2017.
16.  Fuselier et al.: Magnetospheric ion influence at the dayside magnetopause, J. Geophys. Res., 122, 8617-8631, doi:10.1002/2017JA024515, 2017.
17.  Genestreti et al.: Temperature of the plasmasphere from Van Allen Probes HOPE, J. Geophys. Res., 122, 310-323, doi:10.1002/2016JA023047, 2017.
18.  Genestreti et al.: The effect of a guide field on local energy conversion during asymmetric magnetic reconnection: MMS observations, J. Geophys. Res., 122, 11.342-11.353, doi:10.1002/2017JA024247, 2017.
19.  Goetz et al.: Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko, MNRAS, 462, 459–467, doi:10.1093/mnras/stw3148, 2017.
20.  Goetz et al.: Evolution of the magnetic field at comet 67P/Churyumov–Gerasimenko, MNRAS, 469, 268–275, doi:10.1093/mnras/stx1570, 2017.
21.  Graham et al.: Lower hybrid waves in the ion diffusion and magnetospheric inflow regions, J. Geophys. Res., 122, 517-533, doi:10.1002/2016JA023572, 2017.
22.  Graham et al.: Instability of agyrotropic electron beams near the electron diffusion region, Phys. Rev. Lett., 119, 025101, doi:10.1103/PhysRevLett.119.025101, 2017.
23.  Hasegawa et al.: Reconstruction of the electron diffusion region observed by the Magnetospheric MultiScale spacecraft: First results, Geophys. Res. Lett., 44, 4566–4574, doi:10.1002/2017GL073163, 2017.
24.  Huang et al.: Magnetospheric MultiScale observations of electron vortex magnetic hole in the turbulent magnetosheath plasma, Astrophys. J. Lett., 836, L27, doi:10.3847/2041-8213/aa5f50, 2017.
25.  Khutsishvili et al.: Anti-phase oscillations of Hα line Doppler velocity and width in solar limb spicules, Astrophys Space Sci., 362, 235, doi:10.1007/s10509-017-3213-x, 2017.
26.  Kiehas et al.: Large–scale energy budget of impulsive magnetic reconnection: Theory and simulation, J. Geophys. Res., 122, 3212–3231, doi:10.1002/2016JA023169, 2017.
27.  Kömle et al.: Three-dimensional illumination and thermal model of the Abydos region on comet 67P/Churyumov-Gerasimenko, MNRAS, 469, S2-S19, doi:10.1093/mnras/stx561, 2017.
28.  Le et al.: Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm, Geophys. Res. Lett., 44, 3456–3464, doi:10.1002/2017GL073048, 2017.
29.  Le-Contel et al.: Lower-hybrid drift waves and electromagnetic electron space-phase holes associated with dipolarization fronts and field-aligned currents observed by the Magnetospheric MultiScale mission during a substorm, J. Geophys. Res., 122, 12236-12257, doi:10.1002/2017JA024550, 2017.
30.  Li et al.: “Zipper-Like” periodic magnetosonic waves: Van Allen Probes, THEMIS, and Magnetospheric MultiScale observations, J. Geophys. Res., 122, 1600–1610, doi:10.1002/2016JA023536, 2017.
31.  Liu et al.: Double-peaked core field of flux ropes during magnetic reconnection, J. Geophys. Res., 122, 6374-6384, doi:10.1002/2017JA024233, 2017.
32.  Liu et al.: Ultra-low frequency waves deep inside the inner magnetosphere driven by dipolarizing flux bundles, J. Geophys. Res., 122, 10112-10128, doi:10.1002/2017JA024270, 2017.
33.  Liu et al.: The statistical analysis on magnetic holes inside the Earth magnetotail plasma sheet, Chinese J. Geophys., 60, 873-878, doi:10.6038/cjg20170301, 2017.
34.  Lu et al.: Numerical simulation on the multiple dipolarization fronts in the magnetotail, Phys. Plasma, 24, 102903, doi:10.1063/1.4996039, 2017.
35.  Möstl et al.: Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory, Space Weather, 15, 995-970, doi:10.1002/2017SW001614, 2017.
36.  Nakamura et al.: Initial results from the Active Spacecraft Potential Control onboard Magnetospheric MultiScale mission, IEEE Plasma Sci., 45, 1847-1852, doi:10.1109/TPS.2017.2694223, 2017.
37.  Nakamura et al.: Near‑Earth plasma sheet boundary dynamics during substorm dipolarization, Earth, Planets and Space, 69, 129, doi:10.1186/s40623-017-0707-2, 2017.
38.  Nakamura et al.: Turbulent mass transfer caused by vortex induced reconnection in collisionless magnetospheric plasmas, Nature Comm., 8, 1582, doi:10.1038/s41467-017-01579-0, 2017.
39.  Nakamura et al.: Mass and energy transfer across the Earth’s magnetopause caused by vortex-induced reconnection, J. Geophys. Res., 122, 11.505-11.522, doi:10.1002/2017JA024346, 2017.
40.  Narita, Y.: Review article:Wave analysis methods for space plasma experiment, Nonlin. Processes Geophys., 24, 203-2014, doi:10.5194/npg-24-203-2017, 2017.
41.  Narita, Y.: Spectral moments for the analysis of frequency shift, broadening, and wavevector anisotropy in a turbulent flow, Earth, Planets and Space, 69, 73, doi:10.1186/s40623-017-0658-7, 2017.
42.  Narita, Y.: Scaling laws of wave-cascading superfluid turbulence, AIP Adv., 7, 065009, doi:10.1063/1.4985725, 2017.
43.  Narita, Y.: Error estimate of Taylor's frozen-in flow hypothesis in the spectral domain, Ann. Geophys., 35, 325-331, doi:10.5194/angeo-35-325-2017, 2017.
44.  Narita, Y., U. Motschmann: Ion-scale sideband waves and filament formation: Alfvénic impact on heliospheric plasma turbulence, Front. Phys., 5, 8, doi:10.3389/fphy.2017.00008, 2017.
45.  Narita et al.: Minimum variance projection for direct measurements of power-law spectra in the wavenumber domain, Ann. Geophys., 35, 639–644, doi:10.5194/angeo-35-639-2017, 2017.
46.  Narita, Y., Z. Vörös: Lifetime estimate for plasma turbulence, Nonlin. Processes Geophys., 24, 673-679, doi:10.5194/npg-24-673-2017, 2017.
47.  Plaschke et al.: Fluxgate magnetometer offset vector determination by the 3D mirror mode method, MNRAS, 469, 675–684, doi:10.1093/mnras/stx2532, 2017.
48.  Plaschke et al.: Magnetosheath high-speed jets: internal structure and interaction with ambient plasma, J. Geophys. Res., 122, 10157-10175, doi:10.1002/2017JA024471, 2017.
49.  Poh et al.: Coupling between Mercury and its night-side magnetosphere: Cross-tail current sheet asymmetry and substorm current wedge formation, J. Geophys. Res., 122, 8419–8433, doi:10.1002/2017JA024266, 2017.
50.  Poh et al.: Mercury’s cross-tail current sheet: Structure, X-line location and stress balance, Geophys. Res. Lett., 44, 678-686, doi:10.1002/2016GL071612, 2017.
51.  Pylaev et al.: Oscillation of solar radio emission at coronal acoustic cut-off frequency, Astronomy & Astrophysics, 601, A42, doi:10.1051/0004-6361/201629218, 2017.
52.  Roberts et al.: Direct measurement of anisotropic and asymmetric wave vector spectrum in ion-scale solar wind turbulence, Astrophys. J. Lett., 851, L11: doi:10.3847/2041-8213/aa9bf3, 2017.
53.  Roberts et al.: Multipoint analysis of compressive fluctuations in the fast and slow solar wind, J. Geophys. Res., 122, 6940-6963, doi:10.1002/2016JA023552, 2017.
54.  Runov et al.: Characteristics of ion distribution functions in dipolarizing flux bundles: Event studies, J. Geophys. Res., 122, 5965–5978, doi:10.1002/2017JA024010, 2017.
55.  Russell et al.: Structure, force balance, and topology of Earth’s magnetopause, Science, 356, 960-963, doi:10.1126/science.aag3112, 2017.
56.  Schreiber et al.: Beaming of intense AKR seen from the Interball-2 spacecraft, J. Geophys. Res., 122, 249-257, doi:10.1002/2015JA022197, 2017.
57.  Shi et al.: Distribution of field-aligned electron events in the high-altitude polar region: Cluster observations, J. Geophys. Res., 122, 11.245-11.255, doi:10.1002/10.1002/2017JA024360, 2017.
58.  Stawarz et al.: Magnetospheric MultiScale analysis of intense field-aligned poynting flux near the Earth's plasma sheet boundary, Geophys. Res. Lett., 44, 7106–7113, doi:10.1002/2017GL073685, 2017.
59.  Teh et al.: Evolution of a typical ion-scale magnetic flux rope caused by thermal pressure enhancement, J. Geophys. Res., 122, 2040–2050, doi:10.1002/2016JA023777, 2017.
60.  Torkar et al.: Influence of the ambient electric field on measurements of the actively controlled spacecraft potential by MMS, J. Geophys. Res., 122, 12019-12030, doi:10.1002/2017JA024724, 2017.
61.  Treumann, R.A., W. Baumjohann: Causal kinetic equation of non-equilibrium plasmas, Ann. Geophys., 35, 683-690, doi:10.5194/angeo-35-683-2017, 2017.
62.  Treumann, R.A., W. Baumjohann: Electron cyclotron maser instability (ECMI) in strong magnetic guide field reconnection, Ann. Geophys., 35, 999–1013, doi:10.5194/angeo-35-999-2017, 2017.
63.  Treumann, R.A., W. Baumjohann: The usefulness of Poynting’s theorem in magnetic turbulence, Ann. Geophys., 35, 1353-1360, doi:10.5194/angeo-35-1353-2017, 2017.
64.  Varsani et al.: Simultaneous remote observations of intense reconnection effects by DMSP and MMS spacecraft during a storm-time substorm, J. Geophys. Res., 122, 10891-10909, doi:10.1002/2017JA024547, 2017.
65.  Volwerk et al.: Current sheets in comet 67P/Churyumov-Gerasimenko's coma, J. Geophys. Res., 122, 3308–3321, doi:10.1002/2017JA023861, 2017.
66.  Vörös et al.: MMS observation of magnetic reconnection in the turbulent magnetosheath, J. Geophys. Res., 122, 11442-11467, doi:10.1002/2017JA024535, 2017.
67.  Wang et al.: High-latitude Pi2 pulsations associated with kink-like neutral sheet oscillations, J. Geophys. Res., 122, 2889–2899, doi:10.1002/2016JA023370, 2017.
68.  Wang et al.: Interaction of magnetic flux ropes via magnetic reconnection observed at the magnetopause, J. Geophys. Res., 122, 10436-10447, doi:10.1002/2017JA024482, 2017.
69.  Wang et al.: Electron-scale quadrants of the Hall magnetic field observed by the Magnetospheric MultiScale spacecraft during asymmetric reconnection, Phys. Rev. Lett., 118, 175101, doi:10.1103/PhysRevLett.118.175101, 2017.
70.  Wei et al.: Ablation of Venusian oxygen ions by unshocked solar wind, Sci. Bulletin, 62, 1669–1672, doi:10.1016/j.scib.2017.11.006, 2017.
71.  Wilder et al.: The non-linear behaviour of whistler waves at the reconnecting dayside magnetopause as observed by the Magnetospheric MultiScale mission: A case study, J. Geophys. Res., 122, 5487–5501, doi:10.1002/2017JA024062, 2017.
72.  Wu et al.: The distribution of oscillation frequency of magnetic field and plasma parameters in BBFs: THEMIS statistics, J. Geophys. Res., 122, 4325-4334, doi:10.1002/2016JA023089, 2017.
73.  Xiao et al.: Occurrence rate of dipolarization fronts in the plasma sheet: Cluster observations, Ann. Geophys., 35, 1015–1022, doi:10.5194/angeo-35-1015-2017, 2017.
74.  Xiao et al.: Statistical study of low-frequency magnetic field fluctuations near Venus during the solar cycle, J. Geophys. Res., 122, 8409–8418, doi:10.1002/2017JA023878, 2017.
75.  Yao et al.: A direct examination of the dynamics of dipolarization fronts using MMS, J. Geophys. Res., 122, 4335–4347, doi:10.1002/2016JA023401, 2017.
76.  Yushkov et al.: Relationship between electron field-aligned anisotropy and dawn-dusk magnetic field: Nine years of Cluster observations in the Earth magnetotail, J. Geophys. Res., 122, 9294-9305, doi:10.1002/2016JA023739, 2017.
 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020