Publikationen

 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020 
1.  Alexandrova et al.: Two interacting X-lines in magnetotail: evolution of collision between the counter-streaming jets, Geophys. Res. Lett., 43, 7795–7803, doi:10.1002/2016GL069823, 2016.
2.  Anderson et al.: Electrodynamic context of magnetopause dynamics observed by Magnetospheric MultiScale, Geophys. Res. Lett., 43, 5988–5996, doi:10.1002/2016GL069577, 2016.
3.  André et al.: Magnetic reconnection and modification of the Hall physics due to cold ions at the magnetopause, Geophys. Res. Lett., 43, 6705–6712, doi:10.1002/2016GL069665, 2016.
4.  Andriopoulou et al.: Study of the spacecraft potential under active control and plasma density estimates during the MMS commissioning phase., Geophys. Res. Lett., 43, 4858–4864, doi:10.1002/2016GL068529., 2016.
5.  Arridge et al.: Cassini in situ observations of long-duration magnetic reconnection in Saturn’s magnetotail, Nature Physics, 12, 268-271, doi:10.1038/NPHYS3565, 2016.
6.  Baker et al.: A telescopic and microscopic examination of acceleration in the June 2015 geomagnetic storm: Magnetospheric MultiScale and Van Allen Probes study of substorm particle injection, Geophys. Res. Lett., 43, 6051–6059, doi:10.1002/2016GL069643, 2016.
7.  Breuillard et al.: Multispacecraft analysis of dipolarization fronts and associated whistler-wave emissions using MMS data, Geophys. Res. Lett., 43, 7279–7286, doi:10.1002/2016GL069188, 2016.
8.  Burch et al.: Electron-scale measurements of magnetic reconnection in space, Science, doi:10.1126/science.aaf2939, 2016.
9.  Chai et al.: An induced global magnetic field looping around the magnetotail of Venus, J. Geophys. Res., 121, 688–698, doi:10.1002/2015JA021904, 2016.
10.  Cohen et al.: Observations of energetic particle escape at the magnetopause: Early results from the MMS energetic ion spectrometer (EIS), Geophys. Res. Lett., 43, 5960–5968, doi:10.1002/2016GL068689, 2016.
11.  Collinson et al.: The electric wind of Venus: A global and persistent “polar wind”-like ambipolar electric field sufficient for the direct escape of heavy ionospheric ions, Geophys. Res. Lett., 43, 5926–5934, doi:10.1002/2016GL068327, 2016.
12.  Comisel et al.: On the role of ion-scale whistler waves in space and astrophysical plasma turbulence, Ann. Geophys., 34, 975-984, doi:10.5194/angeo-34-975-2016, 2016.
13.  Contel et al.: Whistler mode waves and Hall fields detected by MMS during a dayside magnetopause crossing, Geophys. Res. Lett., 43, 5943–5952, doi:10.1002/2016GL068968, 2016.
14.  Divin et al.: A new model for the electron pressure nongyrotropy in the outer electron diffusion region, Geophys. Res. Lett., 43, 10.565–10.573, doi:10.1002/2016GL070763, 2016.
15.  Dunn et al.: The impact of an ICME on the Jovian X-ray aurora, J. Geophys. Res., 121, doi:10.1002/2015JA021888, online, 2016.
16.  Eastwood et al.: Ion-scale secondary flux-ropes generated by magnetopause reconnection as resolved by MMS, Geophys. Res. Lett., 43, 4716–4724, doi:10.1002/2016GL068747, 2016.
17.  Edberg et al.: CME impact on comet 67P/Churyumov-Gerasimenko, MNRAS, 462, S45-S56, doi:10.1093/mnras/stw2112, 2016.
18.  Ergun et al.: Magnetospheric MultiScale observations of large-amplitude, parallel, electrostatic waves associated with magnetic reconnection at the magnetopause, Geophys. Res. Lett., 43, 5626–5634, doi:10.1002/2016GL068992, 2016.
19.  Ergun et al.: Magnetospheric MultiScale satellites observations of parallel electric fields associated with magnetic reconnection, Phys. Rev. Lett., 116, 235102, doi:10.1103/PhysRevLett.116.235102, 2016.
20.  Erickson et al.: Multipoint MMS observations of fine-scale SAPS structure in the inner magnetosphere, Geophys. Res. Lett., 43, 7294–7300, doi:10.1002/2016GL069174, 2016.
21.  Eriksson et al.: Strong current sheet at a magnetosheath jet: kinetic structure and electron acceleration, J. Geophys. Res., 121, 9608–9618, doi:10.1002/2016JA023146, 2016.
22.  Eriksson et al.: Magnetospheric MultiScale observations of magnetic reconnection associated with Kelvin-Helmholtz waves, Geophys. Res. Lett., 43, 5606–5615, doi:10.1002/2016GL068783, 2016.
23.  Eriksson et al.: Magnetospheric MultiScale observations of the electron diffusion region of large guide field magnetic reconnection, Phys. Rev. Lett., 117, 015001, doi:10.1103/PhysRevLett.117.015001, 2016.
24.  Fischer et al.: Optimized merging of search coil and fluxgate data for MMS, Geosci. Instrum. Method. Data Syst., 5, 521-530, doi:10.5194/gi-5-521-2016, 2016.
25.  Fuselier et al.: Magnetospheric ion influence on magnetic reconnection at the duskside magnetopause, Geophys. Res. Lett., 43, 1435-1442, doi:10.1002/2015GL067358, 2016.
26.  Goetz et al.: First detection of a diamagnetic cavity at comet 67P/Churyumov-Gerasimenko, Astronomy & Astrophysics, 588, A24, doi:10.1051/0004-6361/201527728, 2016.
27.  Goetz et al.: Structure and evolution of the diamagnetic cavity at comet 67P/Churyumov–Gerasimenko, MNRAS, 462, 459–467, doi:10.1093/mnras/stw3148, 2016.
28.  Goodrich et al.: MMS multi-point electric field observations of small-scale magnetic holes, Geophys. Res. Lett., 43, 5953–5959, doi:10.1002/2016GL069157, 2016.
29.  Graham et al.: Electron currents and heating in the ion diffusion region of asymmetric reconnection, Geophy. Res. Lett., 43, 4691–4700, doi:10.1002/2016GL068613, 2016.
30.  Gurgenashvili et al.: Rieger-Type periodicity during solar cycles 14–24: Estimation of dynamo magnetic field strength in the solar interior, Astrophys. J., 826, 55, doi:10.3847/0004-637X/826/1/55, 2016.
31.  He et al.: EMVIM: An Empirical Model for the Magnetic Field Configuration near Venus, J. Geophys. Res., 121, 3362–3380, doi:10.1002/2015JA022049, 2016.
32.  Hu et al.: Sun-to-Earth characteristics of the 2012 July 12 coronal mass ejection and associated geo-effectiveness, Astrophys. J., 829, 97, doi:10.3847/0004-637X/829/2/97, 2016.
33.  Huang et al.: MMS observations of ion-scale magnetic island in the magnetosheath turbulent plasma, Geophys. Res. Lett., 43, 7850–7858, doi:10.1002/2016GL069787, 2016.
34.  Imai et al.: The beaming structure of Jupiters's decametric common S-bursts observed from the LWA1, NDA, and Uran2 radio telescopes, Astrophys. J., 826, 176, doi:10.3847/0004-637X/826/2/176, 2016.
35.  Johlander et al.: Rippled quasiperpendicular shock observed by the magnetospheric multiscale spacecraft, Phys. Rev. Lett., 117, 165101, doi:10.1103/PhysRevLett.117.165101, 2016.
36.  Khotyaintsev et al.: Electron jet of asymmetric reconnection, Geophys. Res. Lett., 43, 5571–5580, doi:10.1002/2016GL069064, 2016.
37.  Kollmann et al.: Properties of planetward ion flows in Venus' magnetotail, Icarus, 274, 73-82, doi:10.1016/j.icarus.2016.02.053, 2016.
38.  Korovinskiy et al.: Numerical linearized MHD model of flapping oscillations, Phys. Plasmas, 23, 062905, doi:10.1063/1.4954388, 2016.
39.  Korovinskiy, D.B., S.A. Kiehas: Generalized double-gradient model of flapping oscillations: Oblique waves, Phys. Plasma, 23, 092902, doi:10.1063/1.4962680, 2016.
40.  Kubicka et al.: Prediction of geomagnetic storm strength from inner heliosperic in situ observations, Astrophys. J., 833, 255, doi:10.3847/1538-4357/833/2/255, 2016.
41.  Kuridze et al.: Kelvin–Helmholtz instability in solar chromospheric jets: Theory and observation, Astrophys. J., 830, 133, doi:10.3847/0004-637X/830/2/133, 2016.
42.  Lavraud et al.: Currents and associated electron scattering and bouncing near the diffusion region at Earth’s magnetopause, Geophys. Res. Lett., 43, 3042-3050, doi:10.1002/2016GL068359, 2016.
43.  Le et al.: Magnetopause erosion during the March 17, 2015, magnetic storm: Combined field-aligned currents, auroral oval, and magnetopause observations, Geophys. Res. Lett., 43, 2396-2404, doi:10.1002/2016GL068257, 2016.
44.  Lhotka et al.: Charged dust grain dynamics subject to solar wind, Poynting-Robertson drag, and the interplanetary magnetic field, Astrophys. J., 828, 10, doi:10.3847/0004-637X/828/1/10, 2016.
45.  Li et al.: Kinetic evidence of magnetic reconnection due to Kelvin-Helmholtz waves, Geophys. Res. Lett., 43, 5635–5643, doi:10.1002/2016GL069192, 2016.
46.  Litvinenko et al.: Quasi-similar decameter emission features appearing in the solar and jovian dynamic spectra, Icarus, 272, 80-87, doi:10.1016/j.icarus.2016.02.039, 2016.
47.  Mandt et al.: RPC observation of the development and evolution of plasma interaction boundaries at 67P/Churyumov-Gerasimenko, MNRAS, 462, S9-S22, doi:10.1093/mnras/stw1736, 2016.
48.  Matsui et al.: Dipolarization in the inner magnetosphere during a geomagnetic storm on 7 October 2015, Geophys. Res. Lett., 43, 9397–9405, doi:10.1002/2016GL070677, 2016.
49.  Maxted et al.: Five transiting hot Jupiters discovered using WASP-South, Euler, and TRAPPIST: WASP-119 b, WASP-124 b, WASP-126 b, WASP-129 b, and WASP-133 b, A&A, 2016.
50.  Murawski et al.: Numerical simulations of magnetic Kelvin–Helmholtz instability at a twisted solar flux tube, MNRAS, 459, 2566-2572, doi:10.1093/mnras/stw703, 2016.
51.  Nagai et al.: Thick escaping magnetospheric ion layer in magnetopause reconnection with MMS observations, Geophys. Res. Lett., 43, 6028–6035, doi:10.1002/2016GL069085, 2016.
52.  Nakamura et al.: Transient, small-scale field-aligned currents in the plasma sheet boundary layer during storm-time substorms, Geophys. Res. Lett., 43, 4841–4849, doi:10.1002/2016GL068768, 2016.
53.  Nakamura et al.: Spatial dimensions of the electron diffusion region in anti-parallel magnetic reconnection, Ann. Geophys., 34, 357-367, doi:10.5194/angeo-34-357-2016, 2016.
54.  Nakamura et al.: Three-dimensional development of front region of plasma jets generated by magnetic reconnection, Geophys. Res. Lett., 43, 8356–8364, doi:10.1002/2016GL070215, 2016.
55.  Nakamura et al.: Multi-scale structures of turbulent magnetic reconnection, Phys. Plasmas, 23, 052116, doi:10.1063/1.4951025, 2016.
56.  Narita, Y.: Cluster observation of magnetohydrodynamic turbulence in the plasma sheet boundary layer, Earth, Planets and Space, 68:69, 1-9, doi:10.1186/s40623-016-0442-0, 2016.
57.  Narita, Y.: Kinetic extension of critical balance to whistler turbulence, Astrophys. J., 831, 31, doi:10.3847/0004-637X/831/1/83, 2016.
58.  Narita et al.: Wave–particle resonance condition test for ion-kinetic waves in the solar wind, Ann. Geophys., 34, 393-398, doi:10.5194/angeo-34-393-2016, 2016.
59.  Narita et al.: Ion Bernstein waves in the magnetic reconnection region, Ann. Geophys., 34, 85-89, doi:10.5194/angeo-34-85-2016, 2016.
60.  Narita et al.: Wave telescope technique for MMS magnetometer, Geophys. Res. Lett., 43, 4774–4780, doi:10.1002/2016GL069035, 2016.
61.  Narita et al.: Critical pitch angle for electron acceleration in a collisionless shock layer, Ann. Geophys., 34, 591–593, doi:10.5194/angeo-34-591-2016, 2016.
62.  Narita et al.: On electron-scale whistler turbulence in the solar wind, Astrophys. J. Lett., 827, L8, doi:10.3847/2041-8205/827/1/L8, 2016.
63.  Norgren et al.: Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection, Geophys. Res. Lett., 43, 6724–6733, doi:10.1002/2016GL069205, 2016.
64.  Palin et al.: Modulation of the substorm current wedge by bursty bulk flows: September 8, 2002 - Revisited, J. Geophys. Res., 121, 4466–4482, doi:10.1002/2015JA022262, 2016.
65.  Panchenko, M., H.O. Rucker: Estimation of emission cone wall thickness of Jupiter’s decametric radio emission using stereoscopic STEREO/WAVES observations, Astron. Astrophys., 596, A18, doi:10.1051/0004-6361/201527397, 2016.
66.  Panov et al.: Magnetotail energy dissipation during an auroral substorm, Nature Physics, 12, 1158-1163, doi:10.1038/NPHYS3879, 2016.
67.  Paranicas et al.: Effects of radial motion on interchange injections at Saturn, Icarus, 264, 342-351, doi:10.1016/j.icarus.2015.10.002, 2016.
68.  Perschke et al.: Observational test for a random sweeping model in solar wind turbulence, Phys. Rev. Lett., 116, 125101, doi:10.1103/PhysRevLett.116.125101, 2016.
69.  Petrukovich et al.: Magnetotail Reconnection, In: Astrophysics and Space Science Library, Eds. W Gonzalez, E. Parker, Springer, 427, doi:10.1007/978-3-319-26432-5_7, 2016.
70.  Plainaki et al.: Planetary space weather: scientific aspects and future perspectives, J. Space Weather Space Clim., 6, A31, doi:10.1051/swsc/2016024, 2016.
71.  Plainaki et al.: Solar energetic particle interactions with the Venusian atmosphere, Ann. Geophys., 34, 595-608, doi:10.5194/angeo-34-595-2016, 2016.
72.  Plaschke et al.: Geoeffective jets impacting the magnetopause are very common, J. Geophys. Res., 121, 3240–3253, doi:10.1002/2016JA022534, 2016.
73.  Plaschke et al.: Steepening of waves at the dusk side magnetopause, Geophys. Res. Lett., 43, 7373–7380, doi:10.1002/2016GL070003, 2016.
74.  Plaschke, F., Y. Narita: On determining fluxgate magnetometer spin axis offsets from mirror mode observations, Ann. Geophys., 34, 759–766, doi:10.5194/angeo-34-759-2016, 2016.
75.  Plotnikov et al.: Long-term tracking of corotating density structures using heliospheric imaging, Solar Phys., 291, 1853–1875, doi:10.1007/s11207-016-0935-9, 2016.
76.  Reiff et al.: Multispacecraft observations and modeling of the June 22/23, 2015 geomagnetic storm, Geophys. Res. Lett., 43, 7311–7318, doi:10.1002/2016GL069154, 2016.
77.  Richter et al.: Two-point observations of low-frequency waves at 67P/Churyumov-Gerasimenko during the descent of PHILAE: comparison of RPCMAG and ROMAP, Ann. Geophys., 34, 609-622, doi:10.5194/angeo-34-609-2016, 2016.
78.  Rollett et al.: ElEvoHI: A novel CME prediction tool for heliosperic imaging combining an elliptical front with drag-based model fitting, Astrophys. J., 824, 131, doi:10.3847/0004-637X/824/2/131, 2016.
79.  Roussos et al.: Quasi-periodic injections of relativistic electrons in Saturn's outer magnetospere, Icarus, 263, 101-116, doi:10.1016/j.icarus.2015.04.017, 2016.
80.  Roussos et al.: Evidence for dust-driven, radial plasma transport in Saturn’s inner radiation belts, Icarus, 274, 272-283, doi:10.1016/j.icarus.2016.02.054, 2016.
81.  Russell et al.: The Magnetospheric MultiScale magnetometers, Space Sci. Rev., 199, 189-256, doi:10.1007/s11214-014-0057-3, 2016.
82.  Schmid et al.: A comparative study of dipolarization fronts at MMS and Cluster, Geophys. Res. Lett., 43, 6012–6019, doi:10.1002/2016GL069520, 2016.
83.  Shan et al.: Characteristics of quasi-monochromatic ULF waves in the Venusian foreshock, J. Geophys. Res., 121, 7385–7397, doi:10.1002/2016JA022876, 2016.
84.  Shevchuk et al.: The storm of decameter spikes during the event of 14 June 2012, Solar Physics, 291, 211-228, doi:10.1007/s11207-015-0799-4, 2016.
85.  Solovieva et al.: Effect of the total solar eclipse of March 20, 2015, on VLF/LF propagation, Geomag. Aeronom., 56, 323-330, doi:10.1134/S0016793216030166, 2016.
86.  Sonnerup et al.: Reconstruction of the electron diffusion region, J. Geophys. Res., 121, 4279–4290, doi:10.1002/2016JA022430, 2016.
87.  Stawarz et al.: Observations of turbulence in a Kelvin-Helmholtz event on September 8, 2015 by the Magnetospheric MultiScale mission, J. Geophys. Res., 121, 11021–11034, doi:10.1002/2016JA023458, 2016.
88.  Tezari et al.: Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001–2014, Ann. Geophys., 34, 1053–1068, doi:10.5194/angeo-34-1053-2016, 2016.
89.  Threlfall et al.: Particle dynamics in a non-flaring solar active region model, Astronomy & Astrophysics, 587, A4, doi:10.1051/0004-6361/201526657, 2016.
90.  Torbert et al.: The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products, Space Sci. Rev., 199, 105-135, doi:10.1007/s11214-014-0109-8, 2016.
91.  Torbert et al.: Erratum to: The electron drift instrument for MMS, Space Sci. Rev., 199, 307–308, doi:10.1007/s11214-016-0238-3, 2016.
92.  Torbert et al.: The electron drift instrument for MMS, Space Sci. Rev., 199, 283-305, doi:10.1007/s11214-015-0182-7, 2016.
93.  Torbert et al.: Estimates of terms in Ohm’s law during an encounter with an electron diffusion region, Geophys. Res. Lett., 43, 5918–5925, doi:10.1002/2016GL069553, 2016.
94.  Torkar et al.: Active spacecraft potential control investigation, Space Sci. Rev., 199, 515-544, doi:10.1007/s11214-014-0049-3, 2016.
95.  Treumann, R.A., W. Baumjohann: Generalised partition functions: inferences on phase space distributions, Ann. Geophys., 34, 557-564, doi:10.5194/angeo-34-557-2016, 2016.
96.  Treumann, R.A., W. Baumjohann: Anisotropic Jüttner (relativistic Boltzmann) distribution, Ann. Geophys., 34, 737–738, doi:10.5194/angeo-34-737-2016, 2016.
97.  Treumann, R.A., W. Baumjohann: Critical temperature in relativistic Lorentzian thermodynamics of massive bosons, Frontiers Phys., 116, 10003, doi:10.1209/0295-5075/116/10003, 2016.
98.  Treumann et al.: Inverse scattering problem in turbulent magnetic fluctuations, Ann. Geophys., 34, 673–689, doi:10.5194/angeo-34-673-2016, 2016.
99.  Turner et al.: Energy limits of electron acceleration in the plasma sheet during substorms: A case study with the Magnetospheric MultiScale (MMS) mission, Geophys. Res. Lett., 43, 7785–7794, doi:10.1002/2016GL069691, 2016.
100.  Vaivads et al.: Turbulence Heating ObserveR – satellite mission proposal, J. Plasma Phys., 82, 905820501, doi:10.1017/S0022377816000775, 2016.
101.  Vech et al.: Statistical features of the global polarity reversal of the Venusian induced magnetosphere in response to the polarity change in interplanetary magnetic field, J. Geophy. Res., 121, 3951–3962, doi:10.1002/2015JA021995, 2016.
102.  Vemareddy et al.: Comparison of magnetic properties in a magnetic cloud and its solar source on 2013 April 11–14, Astrophys. J., 828, 12, doi:10.3847/0004-637X/828/1/12, 2016.
103.  Vernisse et al.: Signatures of complex magnetic topologies from multiple reconnection sites induced by Kelvin-Helmholtz instability, J. Geophys. Res., 121, 9926–9939, doi:10.1002/2016JA023051, 2016.
104.  Volwerk et al.: Mirror mode waves in Venus’s magnetosheath: solar minimum vs. solar maximum, Ann. Geophys., 34, 1099–1108, doi:10.5194/angeo-34-1099-2016, 2016.
105.  Volwerk et al.: Mass-loading, pile-up, and mirror-mode waves at comet 67P/Churyumov-Gerasimenko, Ann. Geophys., 34, 1-15, doi:10.5194/angeo-34-1-2016, 2016.
106.  Vörös et al.: Turbulence-generated protone-scale structures in the terrestrial magnetosheath, Astrophys. J. Lett., 819, L15, doi:10.3847/2041-8205/819/1/L15, 2016.
107.  Wang et al.: Statistical study on ultra low frequency waves in the magnetotail lobe observed by Cluster, J. Geophys. Res., 121, 5319–5332, doi:10.1002/JGRA.52678, 2016.
108.  Wang et al.: Mirror mode structures ahead of dipolarization front near the neutral sheet observed by Cluster, Geophys. Res. Lett., 43, 8853–8858, doi:10.1002/2016GL070382, 2016.
109.  Wang et al.: Coalescence of magnetic flux ropes in the ion diffusion region of magnetic reconnection, Nature Physics, 12, 263-267, doi:10.1038/NPHYS3578, 2016.
110.  Wang et al.: Electrostatic and electromagnetic fluctuations detected inside magnetic flux ropes during magnetic reconnection, J. Geophys. Res., 121, 9473–9482, doi:10.1002/2016JA022906, 2016.
111.  Wilder et al.: Observations of whistler-mode waves with nonlinear parallel electric fields near the dayside magnetic reconnection separatrix by the Magnetospheric MultiScale mission, Geophys. Res. Lett., 43, 5909–5917, doi:10.1002/2016GL069473, 2016.
112.  Wilder et al.: Observations of large-amplitude, parallel, electrostatic waves associated with the Kelvin-Helmholtz instability by the Magnetospheric MultiScale mission, Geophys. Res. Lett., 43, 1-8, doi:10.1002/2016GL070404, 2016.
113.  Wu et al.: Current sheet flapping motions in the tailward flow of magnetic reconnection, J. Geophys. Res., 121, 7817–7827, doi:10.1002/2016JA022819, 2016.
114.  Wu et al.: The distribution of spectral index of magnetic field and ion velocity in Pi2 frequency band in BBFs: THEMIS statistics, Adv. Space Res., 58, 847–855, doi:10.1016/j.asr.2016.05.029, 2016.
115.  Xiao et al.: A statistical study on the shape and position of the magnetotail neutral sheet, Ann. Geophys., 34, 303–311, doi:10.5194/angeo-34-303-2016, 2016.
116.  Xiao et al.: Hemispheric asymmetry in the near-Venusian magnetotail during solar maximum, J. Geophys. Res., 121, 4542–4547, doi:10.1002/2015JA022093, 2016.
117.  Yao et al.: Substructures within a dipolarization front revealed by high-temporal resolution Cluster observations, J. Geophys. Res., 121, 5185–5202, doi:10.1002/2015JA022238, 2016.
118.  Yordanova et al.: Electron scale structures and magnetic reconnection signatures in the turbulent magnetosheath, Geophys. Res. Lett., 43, 5969–5978, doi:10.1002/2016GL069191, 2016.
119.  Yushkov et al.: Current sheet flapping in the near-Earth magnetotail: peculiarities of propagation and parallel currents, Ann. Geophys., 34, 739–750, doi:10.5194/angeo-34-739-2016, 2016.
120.  Zelenyi et al.: Formation of sub-ion scale filamentary force-free structures in the vicinity of reconnection region, Plasma Phys., 58, 054002, doi:10.1088/0741-3335/58/5/054002, 2016.
121.  Zhang, L.Q. et al.: Temporal evolutions of the solar wind conditions at 1 AU prior to the near-Earth X-lines in the tail: Superposed epoch analysis, J. Geophys. Res., 121, 7488–7496, doi:10.1002/2016JA022687, 2016.
122.  Zhang, L.Q. et al.: Bursty bulk flows at different magnetospheric activity levels: Dependence on IMF conditions, J. Geophys. Res., 121, 8773–8789, doi:10.1002/2016JA022397, 2016.
123.  Zhang, T.L. et al.: Weak, quiet magnetic fields seen in the Venus atmosphere, Sci. Rep., 6, 23537, doi:10.1038/srep23537, 2016.
124.  Zhao et al.: Force balance at the magnetopause determined with MMS: Application to flux transfer events, Geophys. Res. Lett., 43, 11941-11947, doi:10.1002/2016GL071568, 2016.
 ...  2011  2012  2013  2014  2015  2016  2017  2018  2019  2020