Publikationen

 ...  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  ... 
1.  Artemyev et al.: Electron pitch angle/energy distribution in the magnetotail, J. Geophys. Res., 119, 7214-7227, doi:10.1002/2014JA020350, 2014.
2.  Boakes et al.: ECLAT Cluster spacecraft magnetotail plasma region identifications (2001–2009), Dataset Papers in Science, 684305, doi:10.1155/2014/684305, 2014.
3.  Cheng et al.: Association of consecutive Pi2-Ps6 band pulsations with earthward fast flows in the plasma sheet in response to IMF variations, J. Geophys. Res., 119, 3617-3640, doi:10.1002/2013JA019275, 2014.
4.  Collinson et al.: The extension of ionospheric holes into the tail of Venus, J. Geophys. Res., 119, 6940-6953, doi:10.1002/2014JA019851, 2014.
5.  Dubinin et al.: Magnetic fields in the Venus ionosphere: Dependence on the IMF direction—Venus express observations, J. Geophys. Res., 119, 7587-7600, doi:10.1002/2014JA020195, 2014.
6.  Forsyth et al.: Increases in plasma sheet temperature with solar wind driving during substorm growth phases, Geophys. Res. Lett., 41, 8713-8721, doi:10.1002/2014GL062400, 2014.
7.  Jackman et al.: Large-scale structure and dynamics of the magnetotails of Mercury, Earth, Jupiter and Saturn, Space Sci. Rev., 182, 85-154, doi:10.1007/s11214-014-0060-8, 2014.
8.  Keiling et al.: Magnetosphere-ionosphere coupling of global Pi2 pulsations, J. Geophys. Res., 119, 2717-2739, doi:10.1002/2013JA019085, 2014.
9.  Li et al.: Anti-dipolarization fronts observed by ARTEMIS, J. Geophys. Res., accepted, 2014.
10.  Li et al.: Azimuthal extent and properties of mid-tail plasmoids from two-point ARTEMIS observations at the Earth-Moon Lagrange points, J. Geophys. Res., 119, 1781-1796, doi:10.1002/2013JA019292, 2014.
11.  Nakamura et al.: Interinstrument calibration using magnetic field data from the flux-gate magnetometer (FGM) and electron drift instrument (EDI) onboard Cluster, Geosci. Instrum. Method. Data Syst., 3, 1-11, doi:10.5194/gi-3-1-2014, 2014.
12.  Nakamura et al.: Low-altitude electron acceleration due to multiple flow-bursts in the magnetotail, Geophys. Res. Lett., 41, 777-784, doi:10.1002/2013GL058982, 2014.
13.  Panov et al.: Period and damping factor of Pi2 pulsations during oscillatory flow braking in the magnetotail, J. Geophys. Res., 119, 4512-4520, doi:10.1002/2013JA019633, 2014.
14.  Panov et al.: On the increasing oscillation period of flows at the tailward retreating flux pileup region during dipolarization, J. Geophys. Res., 119, 6603-6611, doi:10.1002/2014JA020322, 2014.
15.  Plaschke et al.: Flux-gate magnetometer spin axis offset calibration using the electron drift instrument, Meas. Sci. Technol., 25, doi:10.1088/0957-0233/25/10/105008, 2014.
16.  Rong et al.: Morphology of magnetic field in near-Venus magnetotail: Venus Express observations, J. Geophys. Res., doi:10.1002/2014JA020461, accepted, 2014.
17.  Rong et al.: Radial distribution of magnetic field in earth magnetotail current sheet, Planet. Space Sci., 103, 273-285, doi:10.1016/j.pss.2014.07.014, 2014.
18.  Schmid et al.: Mirror mode structures near Venus and Comet P/Halley, Ann. Geophys., 32, 651-657, doi:10.5194/angeo-32-651-2014, 2014.
19.  Sergeev et al.: Event study combining magnetospheric and ionospheric perspectives of the substorm current wedge modeling, J. Geophys. Res., 119, 9714-9728, doi:10.1002/2014JA020522, 2014.
20.  Sergeev et al.: Stopping flow bursts and their role in the generation of the substorm current wedge, Geophys. Res. Lett., 41, 1106-1112, doi:10.1002/2014GL059309, 2014.
21.  Teh et al.: Correlation of core field polarity of magnetotail flux ropes with the IMF By: Reconnection guide field dependency, J. Geophys. Res., 119, 2933-2944, doi:10.1002/2013JA019454, 2014.
22.  Thomsen et al.: Ion composition in interchange injection events in Saturn’s magnetosphere, J. Geophys. Res., 119, 9761–9772, doi:10.1002/ 2014JA020489, 2014.
23.  Torkar et al.: Active spacecraft potential control investigation, Space Sci. Rev., doi:10.1007/s11214-014-0049-3, online, 2014.
24.  Treumann, R.A., W. Baumjohann: Brief communication: Weibel, firehose and mirror mode relations, Nonlin. Processes Geophys., 21, 143-148, doi:10.5194/npg-21-143-2014, 2014.
25.  Treumann, R.A., W. Baumjohann: Fractional Laplace transforms – a perspective, Front. Physics, 2, 29, doi:10.3389/fphy.2014.00029, 2014.
26.  Treumann, R.A., W. Baumjohann: Superdiffusion revisited in view of collisionless reconnection, Ann. Geophys., 32, 643-650, doi:10.5194/angeo-32-643-2014, 2014.
27.  Treumann, R.A., W. Baumjohann: Plasma wave mediated attractive potentials: a prerequisite for electron compound formation, Ann. Geophys., 32, 975-989, doi:10.5194/angeo-32-975-2014, 2014.
28.  Treumann et al.: The strongest magnetic fields in the universe: how strong can they become?, Front. Physics, 2, 59, doi:10.3389/fphy.2014.00059, 2014.
29.  Vasko et al.: The structure of strongly tilted current sheets in the Earth magnetotail, Ann. Geophys., 32, 133-146, doi:10.5194/angeo-32-133-2014, 2014.
30.  Vasko et al.: The structure of the Venusian current sheet, Planet. Space Sci., 96, 84-89, doi:10.1016/j.pss.2014.03.013, 2014.
31.  Vörös et al.: Windsock memory COnditioned RAM (CO-RAM) pressure effect: forced reconnection in the Earth’s magnetotail, J. Geophys. Res., 119, 6273-6293, doi:10.1002/2014JA019857, 2014.
32.  Wang et al.: Flapping current sheet with superposed waves seen in space and on the ground, J. Geophys. Res., 119, 10078-10091, doi:10.1002/2014JA020526, 2014.
33.  Wang et al.: In situ observation of magnetic reconnection in the front of bursty bulk flow, J. Geophys. Res., 119, 9952–9961, doi:10.1002/2014JA020335, 2014.
34.  Wang et al.: Observation of double layer in the separatrix region during magnetic reconnection, Geophys. Res. Lett., 41, 4851-4858, doi:10.1002/2014GL061157, 2014.
35.  Wang et al.: Evidence of transient reconnection in the outflow jet of primary reconnection site, Ann. Geophys., 32, 239-248, doi:10.5194/angeo-32-239-2014, 2014.
 ...  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018  ...