
Cite as: Phys. Plasmas 26, 049901 (2019); https://doi.org/10.1063/1.5094132
Submitted: 27 February 2019 . Accepted: 28 February 2019 . Published Online: 03 April 2019

ARTICLES YOU MAY BE INTERESTED IN

Fast magnetic reconnection and the ideal evolution of a magnetic field
Physics of Plasmas 26, 042104 (2019); https://doi.org/10.1063/1.5081828

Erratum: “Mechanisms of the energy transfer across the magnetic field by Alfvén waves in toroidal plasmas” [Phys. Plasmas 25, 122508 (2018)]
Physics of Plasmas 26, 049902 (2019); https://doi.org/10.1063/1.5094403

Turbulent heating due to magnetic reconnection
Physics of Plasmas 25, 012304 (2018); https://doi.org/10.1063/1.4993423

In a recent paper about electron heating at the reconnection separatrix, two figures depicting the contributions to the electron energy balance and the contribution to the total, quasi-viscous heating are incorrectly displayed. The correct figures are as follows:

![Correct Figure 11](image_url)

FIG. 11. Integration of the various terms of the energy equation over a volume bounded by flux tubes at $\Omega_t = 29.94$. The figure shows that the quasi-viscous contribution is the main energy source. It becomes important as soon as the integration volume extends past the separatrix field line.
FIG. 12. Integration of the components of the quasi-viscous heating term $\Omega_{\text{II}} = 29.94$. The dominance of the term $\sim P_{xz} \frac{d}{dz} v_x$ shows that heating is indeed related to velocity shear effects. The negative contributions of the term $\sim P_{xz} \frac{d}{dz} v_y$ at the separatrix dominate, by far, over the small positive contribution, which is in the electron diffusion region. In the absence of instabilities, the contribution $\sim P_{xz} \frac{d}{dz} v_y$ would likely be reduced and balanced by that $\sim P_{yz} \frac{d}{dz} v_y$.