...  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018 
1.  Akhavan-Tafti et al.: MMS examination of FTEs at the Earth’s subsolar magnetopause, J. Geophys. Res, 123, 1224-1241, doi:10.1002/2017JA024681, 2018.
2.  Amerstorfer et al.: Ensemble prediction of a halo coronal mass ejection using heliospheric imagers, Space Weather, 16, 784–801, doi:10.1029/2017SW001786, 2018.
3.  Andriopoulou et al.: Plasma density estimates from spacecraft potential using MMS observations in the dayside magnetosphere, J. Geophys. Res., 123, 2620–2629, doi:10.1002/2017JA025086, 2018.
4.  Argall et al.: Electron dynamics within the electron diffusion region of asymmetric reconnection, J. Geophys. Res., 123, 149-162, doi:10.1002/2017JA024524, 2018.
5.  Artemyev et al.: Field-aligned currents originating from the magnetic reconnection region: conjugate MMS-ARTEMIS observations, Geophys. Res. Lett., 45, 5836–5844, doi:10.1029/2018GL078206, 2018.
6.  Bagashvili et al.: Evidence for precursors of the coronal hole jets in solar bright points, Astrophys. J. Lett., 855, L21, doi:10.3847/2041-8213/aab08b, 2018.
7.  Bourdin, P., A. Brandenburg: Magnetic helicity from multipolar regions on the solar surface , Astrophys. J., 869, 3, doi:10.3847/1538-4357/aae97f, 2018.
8.  Bourdin et al.: Magnetic helicity reversal in the corona at small plasma beta, Astrophys. J., 869, 2, doi:10.3847/1538-4357/aae97a, 2018.
9.  Bourdin et al.: Inner structure of CME shock fronts revealed by the electromotive force and turbulent transport coefficients in Helios-2 observations, Astrophys. J., 855, 111, doi:10.3847/1538-4357/aaae04, 2018.
10.  Breuillard et al.: New insights into the nature of turbulence in the Earth's magnetosheath using Magnetospheric MultiScale mission data, Astrophys. J., 859, doi:10.3847/1538-4357/aabae8, 2018.
11.  Breuillard et al.: The properties of lion roars and electron dynamics in mirror-mode waves observed by the Magnetospheric MultiScale mission, J. Geophys. Res, 123, 93-103, doi:10.1002/2017JA024551, 2018.
12.  Burch et al.: Wave phenomena and beam-plasma interactions at the magnetopause reconnection region, J. Geophys. Res., 123, 1118-1133, doi:10.1002/2017JA024789, 2018.
13.  Burch et al.: Localized oscillatory energy conversion in magnetopause reconnection, Geophys. Res. Lett., 45, 1237–1245, doi:10.1002/2017GL076809, 2018.
14.  Chang et al.: Magnetic field near Venus: Comparison between solar cycle 24 and previous cycles, Astrophys. J., 867, 129, doi:10.3847/1538-4357/aae3e7, 2018.
15.  Cheng et al.: Influence of the IMF cone angle on invariant latitudes of polar region footprints of FACs in the magnetotail: Cluster observation, J. Geophys. Res., 123, 2588-2597, doi:10.1002/2017JA024941, 2018.
16.  Chong et al.: A statistical study of ionospheric boundary wave formation at Venus, J. Geophys. Res., 123, 7668–7685, doi:10.1029/2018JA025644, 2018.
17.  Collinson et al.: Spontaneous hot flow anomalies at Mars and Venus, J. Geophys. Res., doi:10.1002/2017JA024196, online, 2018.
18.  Collinson et al.: Solar Wind induced waves in the skies of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultra-low frequency magnetosonic waves generated upstream of the Martian bow shock, J. Geophys. Res., 123, 7241–7256, doi:10.1029/2018JA025414, 2018.
19.  Dimmock et al.: The response of the Venusian plasma environment to the passage of an ICME: hybrid simulation results and Venus Express observations, J. Geophys. Res., 123, 3580-3601, doi:10.1029/2017JA024852, 2018.
20.  Ergun et al.: Magnetic reconnection, turbulence, and particle acceleration: Observations in the Earth’s magnetotail, Geophys. Res. Lett., 45, 3338–3347, doi:10.1002/2018GL076993, 2018.
21.  Farrugia et al.: Effects in the near-magnetopause magnetosheath elicited by large-amplitude Alfvénic fluctuations terminating in a field and flow discontinuity, J. Geophys. Res., doi:10.1029/2018JA025724, online, 2018.
22.  Fichtner et al.: Entropy of plasmas described with regularized κ distributions, Phys. Rev. E, 98, 053205, doi:10.1103/PhysRevE.98.053205, 2018.
23.  Friedrich et al.: FIRI-2018, an updated empirical model of the lower ionosphere, J. Geophys. Res., 123, 6737–6751, doi:10.1029/ 2018JA025437, 2018.
24.  Genestreti et al.: MMS observation of asymmetric reconnection supported by 3-D electron pressure divergence, J. Geophys. Res., 123, 1806–1821, doi:10.1002/2017JA025019, 2018.
25.  Genestreti et al.: Assessing the time dependence of reconnection with Poynting's theorem: MMS observations, Geophys. Res. Lettt., 45, 2886–2892, doi:10.1002/2017GL076808, 2018.
26.  Genestreti et al.: How accurately can we measure the reconnection rate EM for the MMS diffusion region event of 2017-07-11?, J. Geophys. Res., doi:10.1029/2018JA025711, online, 2018.
27.  Good et al.: Correlation of ICME magnetic fields at radially aligned spacecraft, Solar Phys., 293, 52, doi:10.1007/s11207-018-1264-y, 2018.
28.  Goodrich et al.: MMS observations of electrostatic waves in an oblique shock crossing, J. Geophys. Res., doi:10.1029/2018JA025830, online, 2018.
29.  Graham et al.: Enhanced escape of spacecraft photoelectrons caused by langmuir and upper hybrid waves, J. Geophys. Res., 123, 7534–7553, doi:10.1029/2018JA025874, 2018.
30.  Graham et al.: Large-amplitude high-frequency waves at Earth's magnetopause, J. Geophys. Res., 123, 2630–2657, doi:10.1002/2017JA025034, 2018.
31.  Graham et al.: Enhanced photoelectron escape caused by Langmuir and upper hybrid waves: MMS observations, J. Geophys. Res., doi:10.1029/2018JA025874, online, 2018.
32.  Harrison et al.: CMEs in the heliosphere: I. A statistical analysis of the observational properties of CMEs detected in the heliosphere from 2007 to 2017 by STEREO/HI-1, Solar Phys, 293, 37, doi:10.1007/s11207-018-1297-2, 2018.
33.  Hasegawa et al.: Reconstruction of the electron diffusion region of magnetotail reconnection seen by the MMS spacecraft on 11 July 2017, J. Geophys. Res., doi:10.1029/2018JA026051, online, 2018.
34.  Hesse et al.: The physical foundation of the reconnection electric field, Phys. Plasma, 25, 032901, doi:10.1063/1.5021461, 2018.
35.  Hietala et al.: In situ observations of a magnetosheath high-speed jet triggering magnetopause reconnection, Geophys. Res. Lett., 45, 1732-1740, doi:10.1002/2017GL076525, 2018.
36.  Holmes et al.: Electron phase-space holes in three dimensions: Multi-spacecraft observations by Magnetospheric MultiScale, J. Geophys. Res., doi:10.1029/2018JA025750, online, 2018.
37.  Hu et al.: A low-energy ion spectrometer with half-space entrance for three-axis stabilized spacecraft, Science China, doi:10.1007/s11431-018-9288-8, 2018.
38.  Karlsson et al.: Investigating the anatomy of magnetosheath jets – MMS observations, Ann. Geophys., 36, 655-677, doi:10.5194/angeo-36-655-2018, 2018.
39.  Kiehas et al.: Magnetotail fast flow occurrence rate and dawn-dusk asymmetry at XGSM ∼ -60 RE, J. Geophys. Res., 123, 1767–1778, doi:10.1002/2017JA024776, 2018.
40.  Korovinskiy et al.: On application of asymmetric Kan-like exact equilibria to the Earth magnetotail modeling, Ann. Geophys., 36, 641–653, doi:10.5194/angeo-36-641-2018, 2018.
41.  Korovinskiy et al.: On the influence of the local maxima of total pressure on the current sheet stability to the kink-like (flapping) mode, Phys. Plasma, 25, 022904, doi: 10.1063/1.5016934, 2018.
42.  Liu et al.: Strongly localized magnetic reconnection by the super-Alfvénic shear flow, Phys. Plasma, 25, 080701, doi:10.1063/1.5042539, 2018.
43.  Meng et al.: Error properties of the fluxgate magnetometer offset based on Davis-Smith method, Chinese J. Geophys. - Chinese Ed., 61, 3545-3551, doi:10.6038/cjg2018L0264, 2018.
44.  Möstl et al.: Forward modeling of coronal mass ejection flux ropes in the inner heliosphere with 3DCORE, Space Weather, 16, 216–229, doi:10.1002/2017SW001735, 2018.
45.  Murphy et al.: Determining the mode, frequency, and azimuthal wave number of ULF waves during a HSS and moderate geomagnetic storm, J. Geophys. Res, 123, 6457–6477. doi:10.1029/2017JA024877, 2018.
46.  Nakamura et al.: Multi-scale currents observed by MMS in the flow braking region, J. Geophys. Res., 123, 1260-1278, doi:10.1002/2017JA024686, 2018.
47.  Nakamura et al.: Remote sensing of the reconnection electric field from in-situ multipoint observations of the separatrix boundary, Geophys. Res. Lett., 45, 3829-3837, doi:10.1029/2018GL078340, 2018.
48.  Nakamura et al.: Measurement of the magnetic reconnection rate in the Earth’s magnetotail, J. Geophys. Res., doi:10.1029/2018JA025713, online, 2018.
49.  Narita, Y.: Space–time structure and wavevector anisotropy in space plasma turbulence, Living Rev. Sol. Phys., 15, 1-48, 10.1007/s41116-017-0010-0, online, 2018.
50.  Narita, Y., T. Hada: Density response to magnetic field fluctuation in the foreshock plasma, Earth, Planets a. Space, 70, 171, doi:10.1186/s40623-018-0943-0, 2018.
51.  Narita, Y., U. Motschmann: Can an interplanetary magnetic field reach the surface of Venus?, Ann. Geophys., 36, 1537–1543, doi:10.5194/angeo-36-1537-2018, 2018.
52.  Narita, Y., Z. Vörös: Evaluation of electromotive force in interplanetary space, Ann. Geophys., 36, 101-106, doi:10.5194/angeo-36-101-2018, 2018.
53.  Norgren et al.: Electron reconnection in the magnetopause current layer, J. Geophys. Res., doi:10.1029/2018JA025676, online, 2018.
54.  Palmerio et al.: Coronal magnetic structure of earthbound CMEs and in situ comparison, Space Weather, 16, doi:10.1002/2017SW001767, 2018.
55.  Palmroth et al.: Magnetosheath jet properties and evolution as determined by a global hybrid-Vlasov simulation, Ann. Geophys., 36, 1171–1182, doi:10.5194/angeo-2018-20, 2018.
56.  Panov, E.V., P.L. Pritchett: Ion cyclotron waves rippling ballooning/interchange instability heads, J. Geophys. Res., 123, 8261–8274, doi:10.1029/2018JA025603, 2018.
57.  Panov, E.V., P.L. Pritchett: Dawnward-drifting interchange heads in the Earth's magnetotail, Geophys. Res. Lett., 45, 8834–8843, doi:10.1029/2018GL078482, 2018.
58.  Paschmann et al.: Large-scale survey of the structure of the dayside magnetopause by MMS, J. Geophys. Res., 123, 2018–2033, doi:10.1002/2017JA025121, 2018.
59.  Phan et al.: Electron magnetic reconnection without ion coupling in Earth’s turbulent magnetosheath, Nature Lett., 557, 202-206, doi:10.1038/s41586-018-0091-5, 2018.
60.  Plaschke et al.: Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling, Geosci. Instrum., doi:10.5194/gi-2018-45, 2018.
61.  Plaschke, F., H. Hietala: Plasma flow patterns in and around magnetosheath jets, Ann. Geophys., 36, 395-703, doi:10.5194/angeo-36-695-2018, 2018.
62.  Plaschke et al.: Jets downstream of collisionless shocks, Space Sci. Rev., 214, 81, doi:10.1007/s11214-018-0516-3, 2018.
63.  Plaschke et al.: First observations of magnetic holes deep within the coma of a comet, Astronom. & Astrophys., 618, A114, doi:10.1051/0004-6361/201833300, 2018.
64.  Roberts et al.: Ion-scale kinetic Alfvén turbulence: MMS measurements of the Alfvén ratio in the magnetosheath, Geophys. Res. Lett., 45, 7974–7984, doi:10.1029/2018GL078498, 2018.
65.  Roberts et al.: Three-dimensional density and compressible magnetic structure in solar wind turbulence, Ann. Geophys., 36, 527–539, doi:10.5194/angeo-36-527-2018, 2018.
66.  Roberts et al.: Multi-scale analysis of compressible fluctuations in the solar wind, Ann. Geophys., 36, 47-52, doi:10.5194/angeo-36-47-2018, 2018.
67.  Shan et al.: The quasi-monochromatic ULF wave boundary in the Venusian foreshock: Venus Express Observations, J. Geophys. Res., 123, 374-384, doi:10.1002/2017JA024054, 2018.
68.  Srivastava et al.: Confined pseudo-shocks as an energy source for the active solar corona, Nature Astron. Lett., doi:10.1038/s41550-018-0590-1, 2018.
69.  Stawarz et al.: Intense electric fields and electron-scale substructure within magnetotail flux ropes as revealed by the Magnetospheric Multiscale mission, Geophys. Res. Lett., 45, 8783–8792, doi:10.1029/2018GL079095, 2018.
70.  Sturner et al.: On multiple Hall-like electron currents and tripolar guide magnetic field perturbations during Kelvin-Helmholtz waves, J. Geophys. Res., 123, 1305-1324, doi:10.1002/2017JA024155, 2018.
71.  Teh et al.: Oblique ion-scale magnetotail flux ropes generated by secondary tearing modes, J. Geophys. Res., 123, 8122–8130, doi:10.1029/2018JA025775, 2018.
72.  Tejada et al.: Measurement of plasma channels in the Venus wake, Icarus, doi:10.1016/j.icarus.2018.09.039, online, 2018.
73.  Temmer et al.: Coronal hole evolution from multi-viewpoint data as input for a STEREO solar wind speed persistence model, J. Space Weather Space Clim., 8, A18, doi:swsc170088, 2018.
74.  Treumann, R.A., W. Baumjohann: Electron mirror branch: observational evidence from “historical” AMPTE-IRM and Equator-S measurements, Ann. Geophys., 1563-1576, doi:10.5194/angeo-36-1563-2018, 2018.
75.  Treumann, R.A., W. Baumjohann: The differential cosmic ray energy flux in the light of an ultrarelativistic generalized Lorentzian thermodynamics, Astrophys. Space Sci., 363, 37, doi:10.1007/s10509-018-3255-8, 2018.
76.  Treumann, R.A., W. Baumjohann: The mirror mode: a “superconducting” space plasma analogue, Ann. Geophys., 36, 1015–1026, doi:10.5194/angeo-36-1015-2018, 2018.
77.  Umeda, T., T.K.M. Nakamura: Electromagnetic linear dispersion relation for plasma with a drift across magnetic field revisited, Phys. Plasma, 28, 102109, doi:10.1063/1.5050542, 2018.
78.  Volwerk, M.: On the location of the Io plasma torus: Voyager 1 observations, Ann. Geophys., 36, 831-839, doi:10.5194/angeo-36-831-2018, 2018.
79.  Volwerk et al.: A tail like no other - The RPC-MAG view of Rosetta’s tail excursion at comet 67P/Churyumov–Gerasimenko, Astron. Astrophys., 614, A10, doi:10.1051/0004-6361/201832198, 2018.
80.  Wang et al.: Impacts of magnetosheath high-speed jets on the magnetosphere and ionosphere measured by optical imaging and satellite observations, J. Geophys. Res., 123, 4879–4894, doi:10.1029/2017JA024954, 2018.
81.  Wang et al.: An electron-scale current sheet without bursty reconnection signatures observed in the near-Earth tail, Geophys. Res. Lett., 45, 4542-4549, doi:10.1002/2017GL076330, 2018.
82.  Wang et al.: Understanding the twist distribution inside magnetic flux ropes by anatomizing an interplanetary magnetic cloud, J. Geophys. Res., 123, 3238–3261, doi:10.1002/2017JA024971, 2018.
83.  Webster et al.: Magnetospheric multiscale dayside reconnection electron diffusion region events, J. Geophys. Res., 123, 4858–4878, doi:10.1029/2018JA025245, 2018.
84.  Wilder et al.: The role of the parallel electric field in electron-scale dissipation at reconnecting currents in the magnetosheath, J. Geophys. Res., 123, 6533–6547, doi:10.1029/2018JA025529, 2018.
85.  Wu et al.: Electron acceleration behind a wavy dipolarization front, Astrophys. Space Sci., 363, 22, doi:10.1007/s10509-017-3241-6, 2018.
86.  Xiao, S.D., T.L. Zhang: Solar cycle variation of the venus magnetic barrier, Planet. Space Sci., 158, 53-62, doi:10.1016/j.pss.2018.05.006, 2018.
87.  Xiao et al.: Magnetic fluctuations and turbulence in the Venusian magnetosheath downstream of different types of bow shock, J. Geophys. Res., 123, 8219–8226, doi:10.1029/2018JA025250, 2018.
88.  Zaqarashvili T., E. Gurgenashvili: Magneto-rossby waves and seismology of solar interior, Astron. Space Sci., 5, 7, doi:10.3389/fspas.2018.00007, 2018.
89.  Zaqarashvili, T.: Equatorial magnetohydrodynamic shallow water waves in the solar tachocline, Astrophys. J., 856, 32, doi:10.3847/1538-4357/aab26f, 2018.
90.  Zhelyazkov et al.: Kelvin–Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA, Adv. Space Res., 69, 628-638, doi:10.1016/j.asr.2017.06.003, 2018.
 ...  2009  2010  2011  2012  2013  2014  2015  2016  2017  2018