Publikationen

 ...  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019 
1.  Angelopoulos et al.: The Space Physics Environment Data Analysis System (SPEDAS), Space Sci. Rev., 215, 9, doi:10.1007/s11214-018-0576-4, 2019.
2.  Archer et al.: Direct observations of a surface eigenmode of the dayside magnetopause, Nature, 10, 615, doi:10.1038/s41467-018-08134-5, 2019.
3.  Chen et al.: Carriers of the field-aligned currents in the plasma sheet boundary layer: An MMS multi-case study, J. Geophys. Res., doi:10.1029/2018JA026216, online, 2019.
4.  Collinson et al.: Spontaneous hot flow anomalies at Mars and Venus, J. Geophys. Res., doi:10.1002/2017JA024196, online, 2019.
5.  Cozzani et al.: In situ spacecraft observations of a structured electron diffusion region during magnetopause reconnection, Phys. Rev. E., 99, 043204, doi:10.1103/PhysRevE.99.043204, 2019.
6.  Gachechiladze et al.: Magneto-Rossby waves in the solar tachocline and the annual variations in solar activity, Astrophys. J., 874, 162, doi:10.3847/1538-4357/ab0955, 2019.
7.  Graham et al.: Enhanced photoelectron escape caused by Langmuir and upper hybrid waves: MMS observations, J. Geophys. Res., doi:10.1029/2018JA025874, online, 2019.
8.  Hasegawa et al.: Reconstruction of the electron diffusion region of magnetotail reconnection seen by the MMS spacecraft on 11 July 2017, J. Geophys. Res., 124, 122-138, doi:10.1029/2018JA026051, 2019.
9.  Hesse et al.: Erratum: “On the role of separatrix instabilities in heating the reconnection outflow region” [Phys. Plasmas 25, 122902 (2018)], Phys. Plasma, 26, 049901, doi:10.1063/1.5094132, 2019.
10.  Holmes et al.: Electron phase-space holes in three dimensions: Multi-spacecraft observations by Magnetospheric MultiScale, J. Geophys. Res., doi:10.1029/2018JA025750, online, 2019.
11.  Janvier et al.: Generic magnetic field intensity profiles of interplanetary coronal mass ejections at Mercury, Venus and Earth from superposed epoch analyses, J. Geophys. Res., 124, 812-836, doi:10.1029/2018JA025949, 2019.
12.  Kuridze et al.: Mapping the magnetic field of flare coronal loops, Astrophys. J., 874, 126, doi:10.3847/1538-4357/ab08e9, 2019.
13.  Masunaga et al.: Effects of the solar wind and the solar EUV flux on O+ escape rates from Venus, ICARUS, 321, 379-387, doi:10.1016/j.icarus.2018.11.017, 2019.
14.  Nakamura et al.: Structure of the current sheet in the 2017/07/11 electron diffusion region event, J. Geophys. Res., 124, 1173-1186, doi:10.1029/2018JA026028, 2019.
15.  Nakamura et al.: Measurement of the magnetic reconnection rate in the Earth’s magnetotail, J. Geophys. Res., doi:10.1029/2018JA025713, online, 2019.
16.  Narita, Y.: A note on Capon’s minimum variance projection for multi-spacecraft data analysis, Front. Phys., 7, 8, doi:10.3389/fphy.2019.00008, 2019.
17.  Pérez-de-Tejada et al.: Measurement of plasma channels in the Venus wake, ICARUS, 321, 1026-1037, doi:10.1016/j.icarus.2018.09.039, 2019.
18.  Plaschke et al.: Advanced calibration of magnetometers on spin-stabilized spacecraft based on parameter decoupling, Geopsci. Instrum., 8, 63-76, doi:10.5194/gi-8-63-2019, 2019.
19.  Schmid et al.: A statistical study on the properties of dips ahead of dipolarization fronts observed by MMS, J. Geophys. Res., 124, 139-150, doi:10.1029/2018JA026062, 2019.
20.  Sorriso-Valvo et al.: Turbulence-driven ion beams in the magnetospheric Kelvin-Helmholtz instability, Phys. Rev. Lett., 122, 035102, doi:10.1103/PhysRevLett.122.035102, 2019.
21.  Spiegeleer et al.: Oscillatory flows in the magnetotail plasma sheet: Cluster observations of the distribution function, J. Geophys. Res., doi:10.1029/2018JA026116, online, 2019.
22.  Treumann et al.: On the ion-inertial-range density-power spectra in solar wind turbulence, Ann. Geophys., 37, 183-199, doi:10.5194/angeo-37-183-2019, 2019.
23.  Treumann et al.: On the applicability of Taylor’s hypothesis in streaming magnetohydrodynamic turbulence, Earth, Planets and Space, 71, 41, doi: 10.1186/s40623-019-1021-y, 2019.
24.  Vashalomidze et al.: Measuremt of the polytropic index during solar coronal rain using a digram of the electron density distribution as a function of electron temperature, Astrophysics, 62, 69-78, doi:10.1007/s10511-019-09565-8, 2019.
25.  Wang et al.: Solar wind directional change triggering flapping motions of the current sheet: MMS observations, Geophys. Res. Lett., 46, 64-70, doi:10.1029/2018GL080023, 2019.
 ...  2010  2011  2012  2013  2014  2015  2016  2017  2018  2019